Pseudomonas aeruginosa(P.aeruginosa)is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis,burn wounds,immunodeficiency,chronic obstructive pulmonary disorder(COPD),cancer,and severe infe...Pseudomonas aeruginosa(P.aeruginosa)is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis,burn wounds,immunodeficiency,chronic obstructive pulmonary disorder(COPD),cancer,and severe infection requiring ventilation,such as COVID-19.P.aeruginosa is also a widely-used model bacterium for all biological areas.In addition to continued,intense efforts in understanding bacterial pathogenesis of P.aeruginosa including virulence factors(LPS,quorum sensing,two-component systems,6 type secretion systems,outer membrane vesicles(OMVs),CRISPR-Cas and their regulation),rapid progress has been made in further studying host-pathogen interaction,particularly host immune networks involving autophagy,inflammasome,noncoding RNAs,cGAS,etc.Furthermore,numerous technologic advances,such as bioinformatics,metabolomics,scRNA-seq,nanoparticles,drug screening,and phage therapy,have been used to improve our understanding of P.aeruginosa pathogenesis and host defense.Nevertheless,much remains to be uncovered about interactions between P.aeruginosa and host immune responses,including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways.The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections,especially those caused by multi-drug resistance strains.Benefited from has advancing in research tools and technology,dissecting this pathogen’s feature has entered into molecular and mechanistic details as well as dynamic and holistic views.Herein,we comprehensively review the progress and discuss the current status of P.aeruginosa biophysical traits,behaviors,virulence factors,invasive regulators,and host defense patterns against its infection,which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.展开更多
This paper is concerned with limit cycles which bifurcate from a period annulus of a quadratic reversible Lotka-Volterra system with sextic orbits.The authors apply the property of an extended complete Chebyshev syste...This paper is concerned with limit cycles which bifurcate from a period annulus of a quadratic reversible Lotka-Volterra system with sextic orbits.The authors apply the property of an extended complete Chebyshev system and prove that the cyclicity of the period annulus under quadratic perturbations is equal to two.展开更多
基金supported by National Institutes of Health Grants R01 AI109317-06 and AI138203-3 to M.W.Some icons or graphic element in the Figures(Figs.1–7)are adapted from BioRender.com(2022).
文摘Pseudomonas aeruginosa(P.aeruginosa)is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis,burn wounds,immunodeficiency,chronic obstructive pulmonary disorder(COPD),cancer,and severe infection requiring ventilation,such as COVID-19.P.aeruginosa is also a widely-used model bacterium for all biological areas.In addition to continued,intense efforts in understanding bacterial pathogenesis of P.aeruginosa including virulence factors(LPS,quorum sensing,two-component systems,6 type secretion systems,outer membrane vesicles(OMVs),CRISPR-Cas and their regulation),rapid progress has been made in further studying host-pathogen interaction,particularly host immune networks involving autophagy,inflammasome,noncoding RNAs,cGAS,etc.Furthermore,numerous technologic advances,such as bioinformatics,metabolomics,scRNA-seq,nanoparticles,drug screening,and phage therapy,have been used to improve our understanding of P.aeruginosa pathogenesis and host defense.Nevertheless,much remains to be uncovered about interactions between P.aeruginosa and host immune responses,including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways.The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections,especially those caused by multi-drug resistance strains.Benefited from has advancing in research tools and technology,dissecting this pathogen’s feature has entered into molecular and mechanistic details as well as dynamic and holistic views.Herein,we comprehensively review the progress and discuss the current status of P.aeruginosa biophysical traits,behaviors,virulence factors,invasive regulators,and host defense patterns against its infection,which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
基金Project supported by the National Natural Science Foundation of China(Nos.11226152,11201086)the Science and Technology Foundation of Guizhou Province(No.[2012]2167)+1 种基金the Foundation for Distinguished Young Talents in Higher Education of Guangdong(No.2012LYM_0087)the Talent Project Foundation of Guizhou University(No.201104)
文摘This paper is concerned with limit cycles which bifurcate from a period annulus of a quadratic reversible Lotka-Volterra system with sextic orbits.The authors apply the property of an extended complete Chebyshev system and prove that the cyclicity of the period annulus under quadratic perturbations is equal to two.