期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Statistical Algorithm for Retrieving Background Value of Absorbing Aerosol Index Based on TROPOMI Measurements
1
作者 Fuying TANG Weihe WANG +4 位作者 Fuqi SI haijin zhou Yuhan LUO Dongshang YANG Yuanyuan QIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1104-1116,共13页
The ultraviolet aerosol index(UVAI) is essential for monitoring the absorbing aerosols during aerosol events. UVAI depends on the absorbing aerosol concentration, the viewing geometry, and the temporal drift of radiom... The ultraviolet aerosol index(UVAI) is essential for monitoring the absorbing aerosols during aerosol events. UVAI depends on the absorbing aerosol concentration, the viewing geometry, and the temporal drift of radiometric sensitivity. To efficiently detect absorbing aerosols with the highest precision and to improve the accuracy of long-term UVAI estimates,the background UVAI must be examined through the UVAI retrieval. This study presents a statistical method that calculates the background value of UVAI using TROPOspheric Monitoring Instrument(TROPOMI) observation data over the Pacific Ocean under clear-sky scenes. Radiative transfer calculations were performed to simulate the dependence of UVAI on aerosol type and viewing geometry. We firstly applied the background UVAI to reducing the effects of viewing geometry and the degradation of the TROPOMI irradiance measurements on the UVAI. The temporal variability of the background UVAI under the same viewing geometry and aerosol concentration was identified. Radiative transfer calculations were performed to study the changes in background UVAI using Aerosol Optical Depth from the Moderate Resolution Imaging Spectroradiometer(MODIS) and reflectance measurements from TROPOMI as input. The trends of the temporal variations in the background UVAI agreed with the simulations. Alterations in the background UVAI expressed the reflectance variations driven by the changes in satellite state. Decreasing trends in solar irradiance at 340 and 380 nm due to instrument degradation were identified. Our findings are valuable because they can be applied to future retrievals of UVAI from the Environmental Trace Gases Monitoring Instrument(EMI) onboard the Chinese GaoFen-5 satellite. 展开更多
关键词 ultraviolet aerosol index background UVAI TROPOMI reflectance DEGRADATION
下载PDF
Atmospheric environment monitoring technology and equipment in China:A review and outlook
2
作者 Youwen Sun Ting Yang +10 位作者 Huaqiao Gui Xin Li Weigang Wang Jun Duan Shushuai Mao Hao Yin Bin zhou Jianlei Lang haijin zhou Cheng Liu Pinhua Xie 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第1期41-53,共13页
Accurate monitoring of the atmospheric environment and its evolution are important for understanding the sources,chemical mechanisms,and transport processes of air pollution and carbon emissions in China,and for regul... Accurate monitoring of the atmospheric environment and its evolution are important for understanding the sources,chemical mechanisms,and transport processes of air pollution and carbon emissions in China,and for regulatory and control purposes.This study gives an overview of atmospheric environment monitoring technology and equipment in China and summarizes the major achievements obtained in recent years.China has made great progress in the development of atmospheric environment monitoring technology and equipment with decades of effort.The manufacturing level of atmospheric environment monitoring equipment and the quality of products have steadily improved,and a technical&production system that can meet the requirements of routine monitoring activities has been initiated.It is expected that domestic atmospheric environment monitoring technology and equipment will be able to meet future demands for routine monitoring activities in China and provide scientific assistance for addressing air pollution problems. 展开更多
关键词 Atmospheric pollution Atmospheric environment Atmospheric monitoring Environmental instrument
原文传递
First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite 被引量:11
3
作者 Chengxin Zhang Cheng Liu +8 位作者 Ka Lok Chan Qihou Hu Haoran Liu Bo Li Chengzhi Xing Wei Tan haijin zhou Fuqi Si Jianguo Liu 《Light(Science & Applications)》 SCIE EI CAS CSCD 2020年第1期1389-1397,共9页
The Environmental Trace Gases Monitoring Instrument(EMI)is the first Chinese satellite-borne UV–Vis spectrometer aiming to measure the distribution of atmospheric trace gases on a global scale.The EMI instrument onbo... The Environmental Trace Gases Monitoring Instrument(EMI)is the first Chinese satellite-borne UV–Vis spectrometer aiming to measure the distribution of atmospheric trace gases on a global scale.The EMI instrument onboard the GaoFen-5 satellite was launched on 9 May 2018.In this paper,we present the tropospheric nitrogen dioxide(NO2)vertical column density(VCD)retrieval algorithm dedicated to EMI measurement.We report the first successful retrieval of tropospheric NO_(2) VCD from the EMI instrument.Our retrieval improved the original EMI NO_(2) prototype algorithm by modifying the settings of the spectral fit and air mass factor calculations to account for the on-orbit instrumental performance changes.The retrieved EMI NO_(2) VCDs generally show good spatiotemporal agreement with the satellite-borne Ozone Monitoring Instrument and TROPOspheric Monitoring Instrument(correlation coefficient R of ~0.9,bias<50%).A comparison with ground-based MAX-DOAS(Multi-Axis Differential Optical Absorption Spectroscopy)observations also shows good correlation with an R of 0.82.The results indicate that the EMI NO_(2) retrieval algorithm derives reliable and precise results,and this algorithm can feasibly produce stable operational products that can contribute to global air pollution monitoring. 展开更多
关键词 measurement dioxide SATELLITE
原文传递
Screening performance of methane activation over atomically dispersed metal catalysts on defective boron nitride monolayers:A density functional theory study
4
作者 Xiao-Ming Cao haijin zhou +2 位作者 Liyang Zhao Xuning Chen Peijun Hu 《Chinese Chemical Letters》 CSCD 2021年第6期1972-1976,共5页
Methane(CH_(4))controllable activation is the key process for CH_(4)upgrading,which is sensitive to the surface oxygen species.The high thermal conductivity and superb thermal stability of the hexagonal boron nitride(... Methane(CH_(4))controllable activation is the key process for CH_(4)upgrading,which is sensitive to the surface oxygen species.The high thermal conductivity and superb thermal stability of the hexagonal boron nitride(h-BN)sheet makes a single transition metal atom doped hexagonal boron nitride monolayer(TM-BN)possible to be a promising material for catalyzing methane partial oxidation.The performances of 24 TM-BNs for CH_(4)activation are systematically investigated during the CH_(4)oxidation by means of first-principles computation.The calculation results unravel the periodic va riation trends for the stability of TM-BN,the adsorption strength and the kind of O_(2)species,and the resulting CH_(4)activation performance on TM-BNs.The formed peroxide O_(2)^(2-)of which the O-O bond could be broken and O-anions are found to be reactive oxygen species for CH_(4)activation under the mild conditions.It is found that the redox potential of TM center,including its valence electron number,coordination environment,and the work function of TM-BN,is the underlying reason for the formation of different oxygen species and the resulting activity for CH_(4)oxidative dehydrogenation. 展开更多
关键词 Boron nitride monolayer Density functional theory Methane activation Surface reactive oxygen species Transition metal center
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部