期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanism of phthalic acid collector in flotation separation of fluorite and rare earth 被引量:4
1
作者 Sheng Chang Mei Li +4 位作者 Kai Gao Dongliang Zhang haijun duan Linlin Ma Zheng Ruan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第1期118-126,共9页
The mechanism of phthalic acid,a dicarboxylic acid collector,in flotation separation of fluorite and rare earth(RE)was studied in this paper.The experimental data of flotation show that phthalic acid,as the collector,... The mechanism of phthalic acid,a dicarboxylic acid collector,in flotation separation of fluorite and rare earth(RE)was studied in this paper.The experimental data of flotation show that phthalic acid,as the collector,can realize highly efficient separation of fluorite and rare earth under weakly acidic conditions.The adsorption mechanism of phthalic acid on the surface of fluorite and bastnaesite was analyzed in this paper by means of the zeta potential measurement,the Fourier transform infrared(FT-IR),the X-ray photoelectron spectroscopy(XPS)and the stability constant measurement of active metal ion and phthalic acid coo rdination complex.According to the zeta potential testing results,the surfaces of fluorite adsorb the collector phthalate ion with negative charge under weakly acidic conditions which,in turn,increases its electronegativity and results in the motion of its potential.After the reaction between phthalic acid and fluorite ores under weakly acidic conditions,the peak of the fluorite ores is found to have significant changes in the FT-IR results,indicating strong chemical adsorption on the surfaces of phthalic acid and fluorite ores.According to the XPS analysis,the peak of benzene ring of phthalic acid is as high as 2%on the surface of fluorite,while no obvious characteristic peak of benzene ring is found on the surface of bastnaesite.According to the pH potentiometric titration results,the stability constant Ktotal of calcium phthalate complex within the acid range is higher than the stability constant K’total of cerium phthalate complex,indicating that the complex generated between phthalic acid and Ca^(2+)is more stable than the complex generated between phthalic acid and Ce^(3+).The possible reason is that Ca^(2+),with the highest reticular density,plays a prevailing role in the octahedron structure of fluorite amidst the acidic media.As the active point of flotation,Ca^(2+)works with the carboxyl groups of the collector phthalic acid(-C=O-)to form polycyclic calcium phthalate complex. 展开更多
关键词 FLUORITE BASTNAESITE Carboxylic acid collector FLOTATION Equilibrium constants of complexes Rare earths
原文传递
The influence of temperature on rare earth flotation with naphthyl hydroxamic acid 被引量:15
2
作者 Mei Li Kai Gao +3 位作者 Dongliang Zhang haijun duan Linlin Ma Lan Huang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第1期99-107,共9页
The influence of temperature on the complex process of Bayan Obo rare earth (RE) ore flotation with a collector of naphthyl hydroxamic acid (LF8#) was investigated. Industrial test data shows that the grade and re... The influence of temperature on the complex process of Bayan Obo rare earth (RE) ore flotation with a collector of naphthyl hydroxamic acid (LF8#) was investigated. Industrial test data shows that the grade and recovery of RE increase with the temperature. However, the proportion of bastnaesite in the bulk concentrate increases as the RE grade improves. Adsorption mechanism of LF8# on the surfaces of bastnaesite and monazite were confirmed via zeta potential, UV]Vis Spectrophotometer (UV]Vis), Fourier transform infrared (FIR), and X-ray photoelectron spectroscopy analyses (XPS). Although the results indicate that the total amount of the LF8# adsorption on the surface of bastnaesite and monazite de- creases with increasing the temperature, the amount of stable adsorbed predominance of characteristic bonds (-C(~O)N-] from LF8# uptake on bastnaesite surfaces increases significantly at high tempera- tures. This conclusion indicates that the adsorption stability increases with increasing the temperature. For monazite, the amount of characteristic elements C and N in LF8# does not increase as the temper- ature increases on the mineral surface, but the proportion of characteristic bonds increases, which shows that the adsorption stability of LF8# on the surface of monazite also increases, but it is not as significant as bastnaesite, which may be one of the reasons that the floatability of bastnaesite is better than those of monazite. Pulp dispersion results show that the temperature improve the dispersions of both the gangue and RE minerals. This improved the flotation selectivity so that it favored RE minerals. The calculated bubble size distribution confirms that higher temperatures generate smaller bubbles, thereby increasing the bubble-particle collision probability and the recovery of RE minerals. 展开更多
关键词 BastnaesiteMonaziteFlotationHydroxamic acidAdsorptionRare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部