期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Highly active bifunctional catalyst: Constructing FeWO_(4)-WO_(3) heterostructure for water and hydrazine oxidation at large current density 被引量:1
1
作者 Fang Shen Zhenglin Wang +6 位作者 Yamei Wang Guangfu Qian Miaojing Pan Lin Luo Guoning Chen hailang wei Shibin Yin 《Nano Research》 SCIE EI CSCD 2021年第11期4356-4361,共6页
Developing high performance anode catalysts for oxygen evolution reaction (OER) and hydrazine oxidation reaction (HzOR) at large current density is an efficient pathway to produce hydrogen. Herein, we synthesize a FeW... Developing high performance anode catalysts for oxygen evolution reaction (OER) and hydrazine oxidation reaction (HzOR) at large current density is an efficient pathway to produce hydrogen. Herein, we synthesize a FeWO_(4)-WO_(3) heterostructure catalyst growing on nickel foam (FeWO_(4)-WO_(3)/NF) by a combination of hydrothermal and calcination method. It shows good catalytic activity with ultralow potentials for OER (ζ_(10) = 1.43 V, ζ_(1.000) = 1.56 V) and HzOR (ζ_(10) = −0.034 V, ζ_(1.000) = 0.164 V). Moreover, there is little performance degradation after being tested for _(10)0 h at 1,000 (OER) and _(10)0 (HzOR) mA·cm−2, indicating good stability. The superior performance could be attributed to the wolframite structure and heterostructure: The former provides a high electrical conductivity to ensure the electronic transfer capability, and the later induces interfacial electron redistribution to enhance the intrinsic activity and stability. The work offers a brand-new way to prepare good performance catalysts for OER and HzOR, especially at large current density. 展开更多
关键词 CATALYST HETEROSTRUCTURE large current density oxygen evolution reaction hydrazine oxidation reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部