Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR...Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.展开更多
The objective of this study was to understand the impact of active pharmaceutical ingredients(API) particle size on a re-developed generic product of glipizide and to improve its formulation so that it exhibits bioequ...The objective of this study was to understand the impact of active pharmaceutical ingredients(API) particle size on a re-developed generic product of glipizide and to improve its formulation so that it exhibits bioequivalent to that of the reference listed drug(RLD). Two commercial batches of APIs(API-1 and API-2) with the same polymorphism and one batch of home-made APIs(API-3) with super-small particle size were used in the present study.The in vitro dissolution profiles of the tested formulations were compared with the RLD in a series of dissolution media. Then, the impact of particle size on in vivo absorption was evaluated in Beagle dogs. Compared with the RLD, formulation A with larger API size showed slower dissolution in p H 6.0 and 7.4 medium, resulting bioinequivalent with the RLD. Conversely, formulation B with smaller API size demonstrated similar in vitro dissolution profiles with the RLD and thus exhibited bioequivalent in the present study. Furthermore, formulation C with super small particle size still exhibited identical oral absorption although rapid dissolution was observed in the tested condition. Herein, it indicated that 2–5 μm might be defined as the "inert size range" of glipizide for ensuring the bioequivalence with the RLD. The results in the present study might help to obtain a better understanding of the variability in raw materials for oral absorption, develop a bioequivalent product and thus post-market quality control.展开更多
基金Project supported by the Xing Dian Talents Support Project of Yunnan Province(Grant No.YNWR-QNBJ-2018-0040)the Youth Project of Applied Basic Research of Yunnan Science(Grant No.202201AU070062)the Yunnan University’s Research Innovation Fund for Graduate Students(Grant No.KC-22221171).
文摘Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.
基金supported by National Science and Technology Major Projects for "Major New Drugs Innovation and Development"(No.2017ZX09101-001-005,Beijing,China)
文摘The objective of this study was to understand the impact of active pharmaceutical ingredients(API) particle size on a re-developed generic product of glipizide and to improve its formulation so that it exhibits bioequivalent to that of the reference listed drug(RLD). Two commercial batches of APIs(API-1 and API-2) with the same polymorphism and one batch of home-made APIs(API-3) with super-small particle size were used in the present study.The in vitro dissolution profiles of the tested formulations were compared with the RLD in a series of dissolution media. Then, the impact of particle size on in vivo absorption was evaluated in Beagle dogs. Compared with the RLD, formulation A with larger API size showed slower dissolution in p H 6.0 and 7.4 medium, resulting bioinequivalent with the RLD. Conversely, formulation B with smaller API size demonstrated similar in vitro dissolution profiles with the RLD and thus exhibited bioequivalent in the present study. Furthermore, formulation C with super small particle size still exhibited identical oral absorption although rapid dissolution was observed in the tested condition. Herein, it indicated that 2–5 μm might be defined as the "inert size range" of glipizide for ensuring the bioequivalence with the RLD. The results in the present study might help to obtain a better understanding of the variability in raw materials for oral absorption, develop a bioequivalent product and thus post-market quality control.