China witnessed a warm and dry climate in 2023.The annual surface air temperature reached a new high of 10.71℃,with the hottest autumn and the second hottest summer since 1961.Meanwhile,the annual precipitation was t...China witnessed a warm and dry climate in 2023.The annual surface air temperature reached a new high of 10.71℃,with the hottest autumn and the second hottest summer since 1961.Meanwhile,the annual precipitation was the second lowest since 2012,at 615.0 mm.Precipitation was less than normal from winter to summer,but more in autumn.Consistent with the annual condition,precipitation in the flood season from May to September was also the second lowest since 2012,which was 4.3%less than normal,with the anomalies in the central and eastern parts of China being higher in central areas and lower in the north and south.On the contrary,the West China Autumn Rain brought much more rainfall than normal,with an earlier start and later end.Although there was less annual precipitation in 2023,China suffered seriously from heavy precipitation events and floods.In particular,from the end of July to the beginning of August,a rare,extremely strong rainstorm caused by Typhoon Dussuri hit Beijing,Tianjin,and Hebei,causing an abrupt alteration from drought to flood conditions in North China.By contrast,Southwest China experienced continuous drought from the previous autumn to current spring.In early summer,North China and the Huanghuai region experienced the strongest high-temperature process since 1961.Nevertheless,there were more cold-air processes than normal impacting China,with the most severe of the year occurring in mid-January.Unexpectedly,in spring,there were more sand and dust occurrences in northern China.展开更多
In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-te...In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-test, M-K test and B-G algorithm are used to verify abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan plateau. The results show that the snow cover has not undergone an abrupt change, but the seasonal freeze-thaw layer obviously witnessed a rapid degradation in 1987, with the frozen soil depth being reduced by about 15 cm. It is also found that when there ~s less snow in the plateau region, precipitation in South China and Southwest China increases. But when the frozen soil is deep, precipitation in most of China apparently decreases. Both snow cover and seasonal freeze-thaw layer on the plateau can be used to predict the summer precipitation in China. However, if the impacts of snow cover and seasonal freeze-thaw layer are used at the same time, the predictability of summer precipitation can be significantly improved. The significant correlation zone of snow is located in middle reaches of the Yangtze River covering the Hexi Corridor and northeastern Inner Mongolia, and the seasonal freeze-thaw layer exists in Mt. Nanling, northern Shannxi and northwestern part of North China. The significant correlation zone of simultaneous impacts of snow cover and seasonal freeze-thaw layer is larger than that of either snow cover or seasonal freeze-thaw layer. There are three significant correlation zones extending from north to south: the north zone spreads from Mr. Daxinganling to the Hexi Corridor, crossing northern Mt. Taihang and northern Shannxi; the central zone covers middle and lower reaches of the Yangtze River; and the south zone extends from Mt. Wuyi to Yunnan and Guizhou Plateau through Mt. Nanling.展开更多
This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of sim...This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of simulations vs. observations show that RegCM3 well captures these impacts. Results indicate that in a more-snow year with deep frozen soil there will be more precipita- tion in the Yangtze River Basin and central Northwest China, western Inner Mongolia, and Xinjiang, but less precipitation in Northeast China, North China, South China, and most of Southwest China. In a less-snow year with deep frozen soil, however, there will be more precipitation in Northeast China, North China, and southern South China, but less precipitation in the Yangtze River Basin and in northern South China. Such differences may be attributed to different combination patterns of melting snow and thawing frozen soil on the Plateau, which may change soil moisture as well as cause differences in energy absorption in the phase change processes of snow cover and frozen soil. These factors may produce more surface sensible heat in more-snow years when the fi'ozen soil is deep than when the frozen soil is shallow. The higher surface sensible heat may lead to a stronger updraft over the Plateau, eventually contributing to a stronger South Asia High and West Pacific Subtropical High. Due to different values of the wind fields at 850 hPa, a convergence zone will form over the Yangtze River Basin, which may produce more summer pre- cipitation in the basin area but less precipitation in North China and South China. However, because soil moisture depends on ice content, in less-snow years with deep frozen soil, the soil moisture will be higher. The combination of higher frozen soil moisture with latent heat absorption in the phase change process may generate less surface sensible heat and consequently a weaker updraft motion over the Plateau. As a result, both the South Asia High and the West Pacific Subtropical High will be weaker, hence caus- ing more summer precipitation in northern China but less in southem China.展开更多
基金supported by the National Key Research and Development Program of China[grant numbers 2023YFC3206001 and 2018YFC150706]the China Meteorological Administration Innovation Development Program[grant number CXFZ2024J071]the National Natural Science Foundation of China[grant numbers U2342209 and 42175078].
文摘China witnessed a warm and dry climate in 2023.The annual surface air temperature reached a new high of 10.71℃,with the hottest autumn and the second hottest summer since 1961.Meanwhile,the annual precipitation was the second lowest since 2012,at 615.0 mm.Precipitation was less than normal from winter to summer,but more in autumn.Consistent with the annual condition,precipitation in the flood season from May to September was also the second lowest since 2012,which was 4.3%less than normal,with the anomalies in the central and eastern parts of China being higher in central areas and lower in the north and south.On the contrary,the West China Autumn Rain brought much more rainfall than normal,with an earlier start and later end.Although there was less annual precipitation in 2023,China suffered seriously from heavy precipitation events and floods.In particular,from the end of July to the beginning of August,a rare,extremely strong rainstorm caused by Typhoon Dussuri hit Beijing,Tianjin,and Hebei,causing an abrupt alteration from drought to flood conditions in North China.By contrast,Southwest China experienced continuous drought from the previous autumn to current spring.In early summer,North China and the Huanghuai region experienced the strongest high-temperature process since 1961.Nevertheless,there were more cold-air processes than normal impacting China,with the most severe of the year occurring in mid-January.Unexpectedly,in spring,there were more sand and dust occurrences in northern China.
基金by the National Key Basic Research Program(2007CB411505)S&T Support Project(2007BAC29B06)National Natural Science Foundation(40705031)
文摘In this paper, a variation series of snow cover and seasonal freeze-thaw layer from 1965 to 2004 on the Tibetan Plateau has been established by using the observation data from meteorological stations. The sliding T-test, M-K test and B-G algorithm are used to verify abrupt changes of snow cover and seasonal freeze-thaw layer in the Tibetan plateau. The results show that the snow cover has not undergone an abrupt change, but the seasonal freeze-thaw layer obviously witnessed a rapid degradation in 1987, with the frozen soil depth being reduced by about 15 cm. It is also found that when there ~s less snow in the plateau region, precipitation in South China and Southwest China increases. But when the frozen soil is deep, precipitation in most of China apparently decreases. Both snow cover and seasonal freeze-thaw layer on the plateau can be used to predict the summer precipitation in China. However, if the impacts of snow cover and seasonal freeze-thaw layer are used at the same time, the predictability of summer precipitation can be significantly improved. The significant correlation zone of snow is located in middle reaches of the Yangtze River covering the Hexi Corridor and northeastern Inner Mongolia, and the seasonal freeze-thaw layer exists in Mt. Nanling, northern Shannxi and northwestern part of North China. The significant correlation zone of simultaneous impacts of snow cover and seasonal freeze-thaw layer is larger than that of either snow cover or seasonal freeze-thaw layer. There are three significant correlation zones extending from north to south: the north zone spreads from Mr. Daxinganling to the Hexi Corridor, crossing northern Mt. Taihang and northern Shannxi; the central zone covers middle and lower reaches of the Yangtze River; and the south zone extends from Mt. Wuyi to Yunnan and Guizhou Plateau through Mt. Nanling.
基金supported by the National Key Basic Research Program (No. 2007CB411505)the National Natural Science Foundation (No. 40705031)
文摘This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of simulations vs. observations show that RegCM3 well captures these impacts. Results indicate that in a more-snow year with deep frozen soil there will be more precipita- tion in the Yangtze River Basin and central Northwest China, western Inner Mongolia, and Xinjiang, but less precipitation in Northeast China, North China, South China, and most of Southwest China. In a less-snow year with deep frozen soil, however, there will be more precipitation in Northeast China, North China, and southern South China, but less precipitation in the Yangtze River Basin and in northern South China. Such differences may be attributed to different combination patterns of melting snow and thawing frozen soil on the Plateau, which may change soil moisture as well as cause differences in energy absorption in the phase change processes of snow cover and frozen soil. These factors may produce more surface sensible heat in more-snow years when the fi'ozen soil is deep than when the frozen soil is shallow. The higher surface sensible heat may lead to a stronger updraft over the Plateau, eventually contributing to a stronger South Asia High and West Pacific Subtropical High. Due to different values of the wind fields at 850 hPa, a convergence zone will form over the Yangtze River Basin, which may produce more summer pre- cipitation in the basin area but less precipitation in North China and South China. However, because soil moisture depends on ice content, in less-snow years with deep frozen soil, the soil moisture will be higher. The combination of higher frozen soil moisture with latent heat absorption in the phase change process may generate less surface sensible heat and consequently a weaker updraft motion over the Plateau. As a result, both the South Asia High and the West Pacific Subtropical High will be weaker, hence caus- ing more summer precipitation in northern China but less in southem China.