A magnetic tunnel junction(MTJ)is the core component in memory technologies,such as the magnetic random-access memory,magnetic sensors and programmable logic devices.In particular,MTJs based on twodimensional van der ...A magnetic tunnel junction(MTJ)is the core component in memory technologies,such as the magnetic random-access memory,magnetic sensors and programmable logic devices.In particular,MTJs based on twodimensional van der Waals(vd W)heterostructures offer unprecedented opportunities for low power consumption and miniaturization of spintronic devices.However,their operation at room temperature remains a challenge.Here,we report a large tunnel magnetoresistance(TMR)of up to 85%at room temperature(T=300 K)in vdW MTJs based on a thin(<10 nm)semiconductor spacer WSe_(2)layer embedded between two Fe_(3)GaTe_(2e)lectrodes with intrinsic above-room-temperature ferromagnetism.The TMR in the MTJ increases with decreasing temperature up to 164%at T=10 K.The demonstration of TMR in ultra-thin MTJs at room temperature opens a realistic and promising route for next-generation spintronic applications beyond the current state of the art.展开更多
The water-energy nexus has garnered worldwide interest.Current dual-functional research aimed at coproducing freshwater and electricity faces significant challenges,including sub-optimal capacities("1+1<2"...The water-energy nexus has garnered worldwide interest.Current dual-functional research aimed at coproducing freshwater and electricity faces significant challenges,including sub-optimal capacities("1+1<2"),poor inter-functional coordination,high carbon footprints,and large costs.Mainstream water-toelectricity conversions are often compromised owing to functionality separation and erratic gradients.Herein,we present a sustainable strategy based on renewable biomass that addresses these issues by jointly achieving competitive solar-evaporative desalination and robust clean electricity generation.Using hydrothermally activated basswood,our solar desalination exceeded the 100% efficiency bottleneck even under reduced solar illumination.Through simple size-tuning,we achieved a high evaporation rate of 3.56 kg h^(-1)m^(-2)and an efficiency of 149.1%,representing 128%-251% of recent values without sophisticated surface engineering.By incorporating an electron-ion nexus with interfacial Faradaic electron circulation and co-ion-predominated micro-tunnel hydrodynamic flow,we leveraged free energy from evaporation to generate long-term electricity(0.38 W m^(-3)for over 14 d),approximately 322% of peer performance levels.This inter-functional nexus strengthened dual functionalities and validated general engineering practices.Our presented strategy holds significant promise for global human–society–environment sustainability.展开更多
Generative Artificial Intelligence(GAI)is attracting the increasing attention of materials community for its excellent capability of generating required contents.With the introduction of Prompt paradigm and reinforcem...Generative Artificial Intelligence(GAI)is attracting the increasing attention of materials community for its excellent capability of generating required contents.With the introduction of Prompt paradigm and reinforcement learning from human feedback(RLHF),GAI shifts from the task-specific to general pattern gradually,enabling to tackle multiple complicated tasks involved in resolving the structure-activity relationships.Here,we review the development status of GAI comprehensively and analyze pros and cons of various generative models in the view of methodology.The applications of task-specific generative models involving materials inverse design and data augmentation are also dissected.Taking ChatGPT as an example,we explore the potential applications of general GAI in generating multiple materials content,solving differential equation as well as querying materials FAQs.Furthermore,we summarize six challenges encountered for the use of GAI in materials science and provide the corresponding solutions.This work paves the way for providing effective and explainable materials data generation and analysis approaches to accelerate the materials research and development.展开更多
If cellulose can be effectively hydrolyzed intoglucose by cellulase,the production costs of hydrogen,ethanol or other chemicals from cellulosic materials will begreatly decreased,and economically viable production ofb...If cellulose can be effectively hydrolyzed intoglucose by cellulase,the production costs of hydrogen,ethanol or other chemicals from cellulosic materials will begreatly decreased,and economically viable production ofbiohydrogen and bioethanol will become feasible.Celluloseis degraded into glucoses by multi-component enzymesystems.Nowadays cellulases are widely used in brewing,food,bioenergy,fodder,textiles,paper,pharmaceuticals,environmental protection and other industries.However,existing cellulases have several problems that limit theirwider applications,including the low turnover number forsolid cellulosic materials,and low stability in adapting tovarious application conditions.For example,high temperature,low pH,and so on.Application of directedevolution technology may be one of the most effectiveways for improving the characteristics of cellulases.Thispaper presents a brief review of the cellulases hydrolysismechanism by cellulase,advances in cellulases(endoglucanaseandβ-glucosidase)improvement by directedevolution for several characteristics(for instance,thermalstability,pH adaptability and enzyme activity),limitationsof directed evolution for cellulases,and the outlook fordirected evolution for cellulase.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1405100 and 2022YFE0134600)the Beijing Natural Science Foundation Key Program(Grant No.Z190007)+2 种基金the National Natural Science Foundation of China(Grant Nos.61774144,62005265,and 52272152)the Key Research Program of Frontier Sciences(Grant No.QYZDY-SSW-JSC020)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB44000000 and XDB28000000)。
文摘A magnetic tunnel junction(MTJ)is the core component in memory technologies,such as the magnetic random-access memory,magnetic sensors and programmable logic devices.In particular,MTJs based on twodimensional van der Waals(vd W)heterostructures offer unprecedented opportunities for low power consumption and miniaturization of spintronic devices.However,their operation at room temperature remains a challenge.Here,we report a large tunnel magnetoresistance(TMR)of up to 85%at room temperature(T=300 K)in vdW MTJs based on a thin(<10 nm)semiconductor spacer WSe_(2)layer embedded between two Fe_(3)GaTe_(2e)lectrodes with intrinsic above-room-temperature ferromagnetism.The TMR in the MTJ increases with decreasing temperature up to 164%at T=10 K.The demonstration of TMR in ultra-thin MTJs at room temperature opens a realistic and promising route for next-generation spintronic applications beyond the current state of the art.
基金supported by the National Natural Science Foundation of China(U21A20162 and 52261145701)the 2115 Talent Development Program of China Agricultural University。
文摘The water-energy nexus has garnered worldwide interest.Current dual-functional research aimed at coproducing freshwater and electricity faces significant challenges,including sub-optimal capacities("1+1<2"),poor inter-functional coordination,high carbon footprints,and large costs.Mainstream water-toelectricity conversions are often compromised owing to functionality separation and erratic gradients.Herein,we present a sustainable strategy based on renewable biomass that addresses these issues by jointly achieving competitive solar-evaporative desalination and robust clean electricity generation.Using hydrothermally activated basswood,our solar desalination exceeded the 100% efficiency bottleneck even under reduced solar illumination.Through simple size-tuning,we achieved a high evaporation rate of 3.56 kg h^(-1)m^(-2)and an efficiency of 149.1%,representing 128%-251% of recent values without sophisticated surface engineering.By incorporating an electron-ion nexus with interfacial Faradaic electron circulation and co-ion-predominated micro-tunnel hydrodynamic flow,we leveraged free energy from evaporation to generate long-term electricity(0.38 W m^(-3)for over 14 d),approximately 322% of peer performance levels.This inter-functional nexus strengthened dual functionalities and validated general engineering practices.Our presented strategy holds significant promise for global human–society–environment sustainability.
基金National Natural Science Foundation of China[grant number 92270124,52073169]National Key Research and Development Program of China[grant number 2021YFB3802101]the Key Research Project of Zhejiang Laboratory[grant number 2021PE0AC02].
文摘Generative Artificial Intelligence(GAI)is attracting the increasing attention of materials community for its excellent capability of generating required contents.With the introduction of Prompt paradigm and reinforcement learning from human feedback(RLHF),GAI shifts from the task-specific to general pattern gradually,enabling to tackle multiple complicated tasks involved in resolving the structure-activity relationships.Here,we review the development status of GAI comprehensively and analyze pros and cons of various generative models in the view of methodology.The applications of task-specific generative models involving materials inverse design and data augmentation are also dissected.Taking ChatGPT as an example,we explore the potential applications of general GAI in generating multiple materials content,solving differential equation as well as querying materials FAQs.Furthermore,we summarize six challenges encountered for the use of GAI in materials science and provide the corresponding solutions.This work paves the way for providing effective and explainable materials data generation and analysis approaches to accelerate the materials research and development.
基金This research was supported by the National Natural Science Foundation of China(Grant No.30870037)Research Fund for the Doctoral Program of Higher Education of China(No.20102329120002)China Postdoctoral Science Foundation(No.20090450983).
文摘If cellulose can be effectively hydrolyzed intoglucose by cellulase,the production costs of hydrogen,ethanol or other chemicals from cellulosic materials will begreatly decreased,and economically viable production ofbiohydrogen and bioethanol will become feasible.Celluloseis degraded into glucoses by multi-component enzymesystems.Nowadays cellulases are widely used in brewing,food,bioenergy,fodder,textiles,paper,pharmaceuticals,environmental protection and other industries.However,existing cellulases have several problems that limit theirwider applications,including the low turnover number forsolid cellulosic materials,and low stability in adapting tovarious application conditions.For example,high temperature,low pH,and so on.Application of directedevolution technology may be one of the most effectiveways for improving the characteristics of cellulases.Thispaper presents a brief review of the cellulases hydrolysismechanism by cellulase,advances in cellulases(endoglucanaseandβ-glucosidase)improvement by directedevolution for several characteristics(for instance,thermalstability,pH adaptability and enzyme activity),limitationsof directed evolution for cellulases,and the outlook fordirected evolution for cellulase.