To bind and fertilize the egg, the spermatozoon should undergo few biochemical and motility changes in the female reproductive tract collectively called capacitation. The capacitated spermatozoon binds to the egg zona...To bind and fertilize the egg, the spermatozoon should undergo few biochemical and motility changes in the female reproductive tract collectively called capacitation. The capacitated spermatozoon binds to the egg zona pellucida, and then undergoes the acmsome reaction (AR), which allows its penetration into the egg. The mechanisms regulating sperm capacitation and the AR are not completely understood. In the present review, we summarize some data regarding the role and regulation of the epidermal growth factor receptor (EGFR) in these processes. In the capacitation process, the EGFR is partially activated by protein kinase A (PKA), resulting in phospholipase D (PLD) activation and actin polymerization. Protein kinase C alpha (PKCα), which is already activated at the beginning of the capacitation, also participates in PLD activation. Further activation of the EGFR at the end of the capacitation enhances intracellular Ca2+ concentration leading to F-actin breakdown and allows the AR to take place. Under in vivoconditions, the EGFR can be directly activated by its known ligand epidermal growth factor (EGF), and indirectly by activating PKA or by transactivation mediated by G protein-coupled receptors (GPCRs) activation or by ouabain. Under physiological conditions, sperm PKA is activated mainly by bicarbonate, which activates the soluble adenylyl cyclase to produce cyclic adenosine monophosphate (cAMP), the activator of PKA. The GPCR activators angiotensin II or Ivsoohosphatidic acid, as well as ouabain and EGF are phvsioloeical comoonents oresent in the female reoroductive tract.展开更多
文摘To bind and fertilize the egg, the spermatozoon should undergo few biochemical and motility changes in the female reproductive tract collectively called capacitation. The capacitated spermatozoon binds to the egg zona pellucida, and then undergoes the acmsome reaction (AR), which allows its penetration into the egg. The mechanisms regulating sperm capacitation and the AR are not completely understood. In the present review, we summarize some data regarding the role and regulation of the epidermal growth factor receptor (EGFR) in these processes. In the capacitation process, the EGFR is partially activated by protein kinase A (PKA), resulting in phospholipase D (PLD) activation and actin polymerization. Protein kinase C alpha (PKCα), which is already activated at the beginning of the capacitation, also participates in PLD activation. Further activation of the EGFR at the end of the capacitation enhances intracellular Ca2+ concentration leading to F-actin breakdown and allows the AR to take place. Under in vivoconditions, the EGFR can be directly activated by its known ligand epidermal growth factor (EGF), and indirectly by activating PKA or by transactivation mediated by G protein-coupled receptors (GPCRs) activation or by ouabain. Under physiological conditions, sperm PKA is activated mainly by bicarbonate, which activates the soluble adenylyl cyclase to produce cyclic adenosine monophosphate (cAMP), the activator of PKA. The GPCR activators angiotensin II or Ivsoohosphatidic acid, as well as ouabain and EGF are phvsioloeical comoonents oresent in the female reoroductive tract.