Isatis indigotica Fort.(Ban-Lan-Gen)is an herbal medicine prescribed for influenza treatment.However,its active components and mode of action remain mostly unknown.In the present study,erucic acid was isolated from Is...Isatis indigotica Fort.(Ban-Lan-Gen)is an herbal medicine prescribed for influenza treatment.However,its active components and mode of action remain mostly unknown.In the present study,erucic acid was isolated from Isatis indigotica Fort.,and subsequently its underlying mechanism against influenza A virus(IAV)infection was investigated in vitro and in vivo.Our results demonstrated that erucic acid exhibited broad-spectrum antiviral activity against IAV resulting from reduction of viral polymerase transcription activity.Erucic acid was found to exert inhibitory effects on IAV or viral(v)RNA-induced pro-inflam-matory mediators as well as interferons(IFNs).The molecular mechanism by which erucic acid with antiviral and anti-inflammatory properties was attributed to inactivation of NF-kB and p38 MAPK signaling.Furthermore,the NF-kB and p38 MAPK inhibitory effect of erucic acid led to diminishing the transcriptional activity of interferon-stimulated gene factor 3(ISGF-3),and thereby reducing IAV-triggered pro-inflammatory response amplification in IFN-β-sensitized cells.Additionally,IAV-or vRNA-triggered apoptosis of alveolar epithelial A549 cells was prevented by erucic acid.In vivo,erucic acid administration consistently displayed decreased lung viral load and viral antigens expression.Meanwhile,erucic acid markedly reduced CD8+cytotoxic T lymphocyte(CTL)recruitment,pro-apoptotic signaling,hyperactivity of multiple signaling pathways,and exacerbated immune inflammation in the lung,which resulted in decreased lung injury and mortality in mice with a mouse-adapted A/FM/1/47-MA(H1N1)strain infection.Our findings provided a mechanistic basis for the action of erucic acid against IAV-mediated inflammation and injury,suggesting that erucic acid may have a therapeutic potential in the treatment of influenza.展开更多
Light trapping within waveguides is a key practice of modern optics,both scientifically and technologically.Photonic crystal fibers traditionally rely on total internal reflection(index-guiding fibers)or a photonic ba...Light trapping within waveguides is a key practice of modern optics,both scientifically and technologically.Photonic crystal fibers traditionally rely on total internal reflection(index-guiding fibers)or a photonic bandgap(photonic-bandgap fibers)to achieve field confinement.Here,we report the discovery of a new light trapping within fibers by the so-called Dirac point of photonic band structures.Our analysis reveals that the Dirac point can establish suppression of radiation losses and consequently a novel guided mode for propagation in photonic crystal fibers.What is known as the Dirac point is a conical singularity of a photonic band structure where wave motion obeys the famous Dirac equation.We find the unexpected phenomenon of wave localization at this point beyond photonic bandgaps.This guiding relies on the Dirac point rather than total internal reflection or photonic bandgaps,thus providing a sort of advancement in conceptual understanding over the traditional fiber guiding.The result presented here demonstrates the discovery of a new type of photonic crystal fibers,with unique characteristics that could lead to new applications in fiber sensors and lasers.The Dirac equation is a special symbol of relativistic quantum mechanics.Because of the similarity between band structures of a solid and a photonic crystal,the discovery of the Dirac-point-induced wave trapping in photonic crystals could provide novel insights into many relativistic quantum effects of the transport phenomena of photons,phonons,and electrons.展开更多
We propose and demonstrate a sensitive vector twist sensor based on a small period long period fiber grating(SP-LPFG)fabricated with a femtosecond(fs)laser.The fabricated SP-LPFG is compact in size(2.8 mm)and shows st...We propose and demonstrate a sensitive vector twist sensor based on a small period long period fiber grating(SP-LPFG)fabricated with a femtosecond(fs)laser.The fabricated SP-LPFG is compact in size(2.8 mm)and shows strong polarization dependent peaks in its transmission spectrum due to the vectorial behavior of high-order cladding modes.Twist sensing is realized by monitoring the polarization dependent peaks,since the polarization of input light changes with fiber twist.The proposed sensor can be interrogated by the peak intensity and wavelength,with high twist sensitivity that reaches 0.257 dB/deg and 0.115 nm/deg,respectively.展开更多
基金funded by the National Natural Science Foundation of China(Grantno.81873065)the Secondary Development Projects of Guangdong Famous and Excellent TraditionalChinese Patent Medicines(Grant no.20174005)+1 种基金the Natural Science Foundation of Guangdong Province(Grant no.2018A030310172)the China Postdoctoral Science Foundation(Grant no.2017M622652,2019M652987)。
文摘Isatis indigotica Fort.(Ban-Lan-Gen)is an herbal medicine prescribed for influenza treatment.However,its active components and mode of action remain mostly unknown.In the present study,erucic acid was isolated from Isatis indigotica Fort.,and subsequently its underlying mechanism against influenza A virus(IAV)infection was investigated in vitro and in vivo.Our results demonstrated that erucic acid exhibited broad-spectrum antiviral activity against IAV resulting from reduction of viral polymerase transcription activity.Erucic acid was found to exert inhibitory effects on IAV or viral(v)RNA-induced pro-inflam-matory mediators as well as interferons(IFNs).The molecular mechanism by which erucic acid with antiviral and anti-inflammatory properties was attributed to inactivation of NF-kB and p38 MAPK signaling.Furthermore,the NF-kB and p38 MAPK inhibitory effect of erucic acid led to diminishing the transcriptional activity of interferon-stimulated gene factor 3(ISGF-3),and thereby reducing IAV-triggered pro-inflammatory response amplification in IFN-β-sensitized cells.Additionally,IAV-or vRNA-triggered apoptosis of alveolar epithelial A549 cells was prevented by erucic acid.In vivo,erucic acid administration consistently displayed decreased lung viral load and viral antigens expression.Meanwhile,erucic acid markedly reduced CD8+cytotoxic T lymphocyte(CTL)recruitment,pro-apoptotic signaling,hyperactivity of multiple signaling pathways,and exacerbated immune inflammation in the lung,which resulted in decreased lung injury and mortality in mice with a mouse-adapted A/FM/1/47-MA(H1N1)strain infection.Our findings provided a mechanistic basis for the action of erucic acid against IAV-mediated inflammation and injury,suggesting that erucic acid may have a therapeutic potential in the treatment of influenza.
基金KX and ZH acknowledge financial support by the NSFC(60588502 and 11404087)ADB acknowledges financial support by the EPSRC of UK.
文摘Light trapping within waveguides is a key practice of modern optics,both scientifically and technologically.Photonic crystal fibers traditionally rely on total internal reflection(index-guiding fibers)or a photonic bandgap(photonic-bandgap fibers)to achieve field confinement.Here,we report the discovery of a new light trapping within fibers by the so-called Dirac point of photonic band structures.Our analysis reveals that the Dirac point can establish suppression of radiation losses and consequently a novel guided mode for propagation in photonic crystal fibers.What is known as the Dirac point is a conical singularity of a photonic band structure where wave motion obeys the famous Dirac equation.We find the unexpected phenomenon of wave localization at this point beyond photonic bandgaps.This guiding relies on the Dirac point rather than total internal reflection or photonic bandgaps,thus providing a sort of advancement in conceptual understanding over the traditional fiber guiding.The result presented here demonstrates the discovery of a new type of photonic crystal fibers,with unique characteristics that could lead to new applications in fiber sensors and lasers.The Dirac equation is a special symbol of relativistic quantum mechanics.Because of the similarity between band structures of a solid and a photonic crystal,the discovery of the Dirac-point-induced wave trapping in photonic crystals could provide novel insights into many relativistic quantum effects of the transport phenomena of photons,phonons,and electrons.
基金supported by the National Natural Science Foundation of China (Nos. 11574070, 11874126, and 51803037)the Leading Talents of Guangdong Province Program (No. 2016LJ06D506)the Natural Science FoundationofGuangdongProvince,China(No. 2019A1515011229)
文摘We propose and demonstrate a sensitive vector twist sensor based on a small period long period fiber grating(SP-LPFG)fabricated with a femtosecond(fs)laser.The fabricated SP-LPFG is compact in size(2.8 mm)and shows strong polarization dependent peaks in its transmission spectrum due to the vectorial behavior of high-order cladding modes.Twist sensing is realized by monitoring the polarization dependent peaks,since the polarization of input light changes with fiber twist.The proposed sensor can be interrogated by the peak intensity and wavelength,with high twist sensitivity that reaches 0.257 dB/deg and 0.115 nm/deg,respectively.