Achieving dynamic compliance for energy-efficient legged robot motion is a longstanding challenge.Although recent predictive control methods based on single-rigid-body models can generate dynamic motion,they all assum...Achieving dynamic compliance for energy-efficient legged robot motion is a longstanding challenge.Although recent predictive control methods based on single-rigid-body models can generate dynamic motion,they all assume infinite energy,making them unsuitable for prolonged robot operation.Addressing this issue necessitates a mechanical structure with energy storage and a dynamic control strategy that incorporates feedback to ensure stability.This work draws inspiration from the efficiency of bio-inspired muscle–tendon networks and proposes a controllable torsion spring leg structure.The design integrates a spring-loaded inverted pendulum model and adopts feedback delays and yield springs to enhance the delay effects.A leg control model that incorporates motor loads is developed to validate the response and dynamic performance of a leg with elastic joints.This model provides torque to the knee joint,effectively reducing the robot’s energy consumption through active or passive control strategies.The benefits of the proposed approach in agile maneuvering of quadruped robot legs in a realistic scenario are demonstrated to validate the dynamic motion performance of the leg with elastic joints with the advantage of energy-efficient legs.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.62373064)in part by the State Key Laboratory of Robotics and Systems,Harbin Institute of Technology,China(Grant No.SKLRS-2023-KF-05)in part by the Fundamental Research Funds for Central Universities,China(Grants Nos.300102259308,300102259401).
文摘Achieving dynamic compliance for energy-efficient legged robot motion is a longstanding challenge.Although recent predictive control methods based on single-rigid-body models can generate dynamic motion,they all assume infinite energy,making them unsuitable for prolonged robot operation.Addressing this issue necessitates a mechanical structure with energy storage and a dynamic control strategy that incorporates feedback to ensure stability.This work draws inspiration from the efficiency of bio-inspired muscle–tendon networks and proposes a controllable torsion spring leg structure.The design integrates a spring-loaded inverted pendulum model and adopts feedback delays and yield springs to enhance the delay effects.A leg control model that incorporates motor loads is developed to validate the response and dynamic performance of a leg with elastic joints.This model provides torque to the knee joint,effectively reducing the robot’s energy consumption through active or passive control strategies.The benefits of the proposed approach in agile maneuvering of quadruped robot legs in a realistic scenario are demonstrated to validate the dynamic motion performance of the leg with elastic joints with the advantage of energy-efficient legs.