期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of nitrogen and salt on growth and physiological characteristics of processing tomato under drip irrigation 被引量:1
1
作者 Jiulong Wang Zhenhua Wang +3 位作者 haiqiang li Wenhao li Tianyu Wang Mingdong Tan 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第6期115-125,共11页
Xinjiang of China is one of the three largest planting bases of processing tomato in the world,but soil salinization has restricted the production of tomato processing.In order to study the effects of soil nitrogen,sa... Xinjiang of China is one of the three largest planting bases of processing tomato in the world,but soil salinization has restricted the production of tomato processing.In order to study the effects of soil nitrogen,salt and their interaction on growth and physiological characteristics of processing tomato under drip irrigation,different amount of nitrogen fertilizer were added to reconcile different salt stress to explore the response mechanisms of growth and yield of processing tomato to soil nitrogen and salt contents with a two-year experiments.The results showed that the effects of soil salinity on the growth and physiological characteristics of processing tomato were significantly greater than that of input of nitrogen fertilizers.The higher soil salt content(≥5.0 g/kg)significantly inhibited the growth of processing tomato.The increase in addition of nitrogen fertilizer could alleviate the salt inhibition and promote the growth of processed tomato with the increase of soil salt content,and the maximum nitrogen application rate was 300 kg/hm2.The linear plus platform was selected to determine the nitrogen effect models of non-saline-alkali soil and weak saline-alkali soil,but the square root nitrogen effect model of moderate saline-alkali soil was selected to accurately predict the yield of processing tomato.It was suggested that the processing tomatoes should be planted in moderate saline-alkali soil to achieve higher yields due to lower input of nitrogen fertilizer,potentially reducing fertilizer costs and maximizing profits from high processing tomato yields.The results have a strong guiding significance for planting of processing tomato on saline-alkali land and appropriate fertilization to increase the yield of processing tomato. 展开更多
关键词 drip irrigation processing tomato SALINITY photosynthetic fluorescence parameters nitrogen use efficiency water use efficiency
原文传递
Effects of biodegradable mulching films on soil hydrothermal conditions and yield of drip-irrigated cotton(Gossypium hirsutum L.)
2
作者 Dongwang Wang Zhenhua Wang +7 位作者 Hongwei Ding Bo Zhou Jinzhu Zhang Wenhao li haiqiang li Yam P.Dhital Tianyu Wang Rui Zong 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第6期153-164,共12页
The pollution of cotton fields by residual films is serious on ground that has been subjected to long-term drip irrigation in Xinjiang,China,and biodegradable mulches are therefore advocated as an alternative to plast... The pollution of cotton fields by residual films is serious on ground that has been subjected to long-term drip irrigation in Xinjiang,China,and biodegradable mulches are therefore advocated as an alternative to plastic ones.In this study the mulching with biodegradable films under drip irrigation conditions in the extremely arid region of Xinjiang was investigated to determine the effects on soil hydrothermal conditions and cotton(Gossypium hirsutum L.)yield over two consecutive years(2019-2020)using plastic mulch made from polyethylene(PE)film and four types of biodegradable films,including black opaque oxidation-biodegradable film(M1),colorless transparent oxidation-biodegradable film(M2),black opaque fully biodegradable film(M3)and white translucent fully biodegradable film(M4),which had different levels of biodegradability(i.e.different degradation times and rates).The biodegradability,soil water contents,soil temperatures and cotton yields were compared between the degradable(M1 to M4)and PE films.The results indicated that M2 was degraded the quickest and showed the highest degree of degradation compared with the other degradable films and PE films.The degradation rates of the various mulching films were ranked in a descending order as M2,M4,M1,M3 and PE,but the PE mulch exhibited the best performance in terms of soil water and heat conservation throughout the growth period.The soil heat preservation and moisture conservation performance under biodegradable films mulching at the cotton seedling stage and budding stage was similar to that of PE film.The average soil temperature at a depth of 5 cm under mulching with the degradable films was 2.66°C-5.06°C(p<0.05)lower than that under traditional PE films at the flowering stage.At the late stage of cotton growth,the water content of shallow soil mulched with PE film was better for plant grown than that under the biodegradable films.The effect of film degradation on the shallow soil water content was much greater than that in deep soil,especially at a depth of 0-40 cm.However,in all treatments,the seedling rate and growth index of cotton under M2 were equivalent to that found under the PE film.Moreover,the cotton yield using M2 was slightly higher than that for the PE film.Compared with the PE film,the yield of cotton mulched with M1,M3 and M4 was decreased by 7.50%,6.45%and 2.83%in 2019,and 9.82%,6.48%,and 2.13%,in 2020,respectively.Therefore,based on the performance in improving cotton yield and maintaining soil moisture,the biodegradable transparent film(M2)with an 80 d induction period is recommended as a competitive alternative to plastic mulch to enhance crop yield and control soil pollution. 展开更多
关键词 arid environment biodegradable films cotton yield oasis agroecosystem soil temperature soil moisture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部