期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Peripheral octamethyl-substituted nickel(Ⅱ)-phthalocyanine-decorated carbon-nanotube electrodes for high-performance all-solid-state flexible symmetric supercapacitors
1
作者 Yu Wang Minzhang Li +5 位作者 Rajendran Ramachandran haiquan shan Qian Chen Anxin Luo Fei Wang Zong-Xiang Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期214-225,I0006,共13页
Construction of advanced electrode materials with unique performance for supercapacitors(SCs)is essential to achieving high implementation in the commercial market.Here,we report a novel peripheral octamethyl-substitu... Construction of advanced electrode materials with unique performance for supercapacitors(SCs)is essential to achieving high implementation in the commercial market.Here,we report a novel peripheral octamethyl-substituted nickel(Ⅱ)phthalocyanine(Ni Me_(2)Pc)-based nanocomposite as the electrode material of all-solid-state SCs.The highly redox-active NiMe_(2)Pc/carboxylated carbon nanotube(CNTCOOH)dendritic nanocomposite provides rapid electron/electrolyte ion-transport pathways and exhibits excellent structural stability,resulting in high-capacity activity and impressive cycling stability.The composite prepared with the optimized weight ratio of Ni Me_(2)Pc:CNT-COOH(6:10)showed the highest specific capacitance of 330.5 F g^(-1)at 0.25 A g^(-1).The constructed NiMe_(2)Pc/CNT-COOH-based all-solid-state symmetric SC device showed excellent performance with a maximum energy density of 22.8 Wh kg^(-1)and outstanding cycling stability(111.6%retained after 35,000 cycles).Moreover,flexible carbon cloth significantly enhanced the energy density of the NiMe_(2)Pc/CNT-COOH all-solid-state symmetric device to 52.1 Wh kg^(-1)with 95.4%capacitance retention after 35,000 cycles,and it could be applied to highperformance flexible electronics applications.These findings provide a novel strategy to design phthalocyanine-based electrode materials for next-generation flexible SC devices. 展开更多
关键词 Nickel phthalocyanine Carbon nanotubes Nanocomposites Flexible supercapacitors Cycling stability
下载PDF
Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
2
作者 齐飞 吴波 +4 位作者 徐俊源 陈潜 单海权 许家驹 许宗祥 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期698-704,共7页
This report presents two non-perihperally octaalkyl-substituted nickel phthalocyanines(NiPcs),namely,NiEt2Pc and NiPr_(2)Pc,for use as dopant-free hole transport materials in perovskite solar cells(PSCs).The length ex... This report presents two non-perihperally octaalkyl-substituted nickel phthalocyanines(NiPcs),namely,NiEt2Pc and NiPr_(2)Pc,for use as dopant-free hole transport materials in perovskite solar cells(PSCs).The length extension of the alkyl chains from ethyl to propyl significantly tunes the NiPcs’energy levels,thus reducing charge carrier recombination at the perovskite/hole transport layer(HTL)interface and leading to higher open-circuit voltage(VOC)and short-circuit current density(JSC)observed for the NiPr_(2)Pc-based PSC.And higher charge carrier mobility,higher thin film crystallinity,and lower surface roughness of the NiPr_(2)Pc HTL compared with that of the NiEt2Pc one also lead to higher JSC and fill factor(FF)observed for the NiPr_(2)Pc-based device.Consequently,the NiPr_(2)Pc-based PSC exhibits a higher power conversion efficiency(PCE)of 14.07%than that of the NiEt2Pc-based device(8.63%). 展开更多
关键词 perovskite solar cells metal phthalocyanines hole transport layers
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部