Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic ...Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.展开更多
A theoretical model of a circular flexure-mode piezoelectric bimorph ac- tuator is established. The circular bimorph structure, consisting of two flexible layers of piezoelectric material and a layer of metallic mater...A theoretical model of a circular flexure-mode piezoelectric bimorph ac- tuator is established. The circular bimorph structure, consisting of two flexible layers of piezoelectric material and a layer of metallic material in the middle, is powered to the flexural deformation. The analytical solutions including the statics solution and the dynamics solution are derived from the 3D equations of the linear theory of piezoelectric- ity. Numerical results are included to show the circular bimorph piezoelectric actuator (CBPA) performance, depending on the physical parameters.展开更多
The paper examines the weakly nonlinear behavior of a 5-layer beam-like piezo- electric transformer operating near resonance, where the main structure of the device consists of properly poled and electroded flexible p...The paper examines the weakly nonlinear behavior of a 5-layer beam-like piezo- electric transformer operating near resonance, where the main structure of the device consists of properly poled and electroded flexible piezoceramic four-layers separated by a central metallic layer. Nonlinear effects of the large deflection to induce the incidental implane extension near res- onance are considered, which is shown that on one side of the resonant frequency the output-input relation becomes nonlinear, and the other side output voltage experiences jumps.展开更多
基金supported by the Overseas Expertise Introduction Center for Discipline Innovation(D18025)National Nature Science Foundation of China(Grant No.41931295)
文摘Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.
基金Project supported by the National Natural Science Foundation of China(Nos.11403109,11190014,10921063,and 11373073)the Natural Science Foundation of Jiangsu Province(No.BK20141042)
文摘A theoretical model of a circular flexure-mode piezoelectric bimorph ac- tuator is established. The circular bimorph structure, consisting of two flexible layers of piezoelectric material and a layer of metallic material in the middle, is powered to the flexural deformation. The analytical solutions including the statics solution and the dynamics solution are derived from the 3D equations of the linear theory of piezoelectric- ity. Numerical results are included to show the circular bimorph piezoelectric actuator (CBPA) performance, depending on the physical parameters.
基金Project supported by the National Science Foundation of China(Nos.10932004 and 11272127)
文摘The paper examines the weakly nonlinear behavior of a 5-layer beam-like piezo- electric transformer operating near resonance, where the main structure of the device consists of properly poled and electroded flexible piezoceramic four-layers separated by a central metallic layer. Nonlinear effects of the large deflection to induce the incidental implane extension near res- onance are considered, which is shown that on one side of the resonant frequency the output-input relation becomes nonlinear, and the other side output voltage experiences jumps.