期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Classified Early Warning and Forecast of Severe Convective Weather Based on LightGBM Algorithm
1
作者 Xinwei Liu haixia duan +2 位作者 Wubin Huang Runxia Guo Bolong duan 《Atmospheric and Climate Sciences》 2021年第2期284-301,共18页
Severe convective weather can lead to a variety of disasters, but they are still difficult to be pre-warned and forecasted in the meteorological operation. This study generates a model based on the light gradient boos... Severe convective weather can lead to a variety of disasters, but they are still difficult to be pre-warned and forecasted in the meteorological operation. This study generates a model based on the light gradient boosting machine (LightGBM) algorithm using C-band radar echo products and ground observations, to identify and classify three major types of severe convective weather (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, hail, short-term heavy rain (STHR), convective gust (CG)). The model evaluations show the LightGBM model performs well in the training set (2011-2017) and the testing set (2018) with the overall false identification ratio (FIR) of only 4.9% and 7.0%, respectively. Furthermore, the average probability of detection (POD), critical success index (CSI) and false alarm ratio (FAR) for the three types of severe convective weather in two sample sets are over 85%, 65% and lower than 30%, respectively. The LightGBM model and the storm cell identification and tracking (SCIT) product are then used to forecast the severe convective weather 15 - 60 minutes in advance. The average POD, CSI and FAR for the forecasts of the three types of severe convective weather are 57.4%, 54.7% and 38.4%, respectively, which are significantly higher than those of the manual work. Among the three types of severe convective weather, the STHR has the highest POD and CSI and the lowest FAR, while the skill scores for the hail and CG are similar. Therefore, the LightGBM model constructed in this paper is able to identify, classify and forecast the three major types of severe convective weather automatically with relatively high accuracy, and has a broad application prospect in the future automatic meteorological operation. 展开更多
关键词 Severe Convective Weather Machine Learning LightGBM Early Warning and Forecast
下载PDF
Impacts of Land-Use Data on the Simulation of Surface Air Temperature in Northwest China 被引量:2
2
作者 Yaohui LI Cailing ZHAO +5 位作者 Tiejun ZHANG Wei WANG haixia duan Yuanpu LIU Yulong REN Zhaoxia PU 《Journal of Meteorological Research》 SCIE CSCD 2018年第6期896-908,共13页
This study examines the impacts of land-use data on the simulation of surface air temperature in Northwest China by the Weather Research and Forecasting(WRF) model. International Geosphere–Biosphere Program(IGBP) lan... This study examines the impacts of land-use data on the simulation of surface air temperature in Northwest China by the Weather Research and Forecasting(WRF) model. International Geosphere–Biosphere Program(IGBP) landuse data with 500-m spatial resolution are generated from Moderate Resolution Imaging Spectroradiometer(MODIS)satellite products. These data are used to replace the default U.S. Geological Survey(USGS) land-use data in the WRF model. Based on the data recorded by national basic meteorological observing stations in Northwest China, results are compared and evaluated. It is found that replacing the default USGS land-use data in the WRF model with the IGBP data improves the ability of the model to simulate surface air temperature in Northwest China in July and December 2015. Errors in the simulated daytime surface air temperature are reduced, while the results vary between seasons. There is some variation in the degree and range of impacts of land-use data on surface air temperature among seasons. Using the IGBP data, the simulated daytime surface air temperature in July 2015 improves at a relatively small number of stations, but to a relatively large degree; whereas the simulation of daytime surface air temperature in December 2015 improves at almost all stations, but only to a relatively small degree(within 1°C). Mitigation of daytime surface air temperature overestimation in July 2015 is influenced mainly by the change in ground heat flux. The modification of underestimated temperature comes mainly from the improvement of simulated net radiation in December 2015. 展开更多
关键词 surface air temperature land-use data numerical simulation Northwest China
原文传递
Evaluation of the Forecast Accuracy of Near-Surface Temperature and Wind in Northwest China Based on the WRF Model 被引量:2
3
作者 haixia duan Yaohui LI +3 位作者 Tiejun ZHANG Zhaoxia PU Cailing ZHAO Yuanpu LIU 《Journal of Meteorological Research》 SCIE CSCD 2018年第3期469-490,共22页
This study investigated the performance of the mesoscale Weather Research and Forecasting(WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in J... This study investigated the performance of the mesoscale Weather Research and Forecasting(WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in June and December 2015. The spatial distribution of the monthly average bias errors in the forecasts of 2-m temperature and 10-m wind speed is analyzed first. It is found that the forecast errors for 2-m temperature and 10-m wind speed in June are strongly correlated with the terrain distribution. However, this type of correlation is not apparent in December, perhaps due to the inaccurate specification of the surface albedo and freezing-thawing process of frozen soil in winter in Northwest China in the WRF model. In addition, the WRF model is able to reproduce the diurnal variation in 2-m temperature and 10-m wind speed, although with weakened magnitude. Elevations and land-use types have strong influences on the forecast of near-surface variables with seasonal variations. The overall results imply that accurate specification of the complex underlying surface and seasonal changes in land cover is necessary for improving near-surface forecasts over Northwest China. 展开更多
关键词 Weather Research and Forecasting(WRF) model complex terrain near-surface forecasts diurnal variation
原文传递
Effects of Updated RegCM4 Land Use Data on Near-Surface Temperature Simulation in China
4
作者 Yulong REN Yaohui LI +3 位作者 Zhaoxia PU Tiejun ZHANG haixia duan Wei WANG 《Journal of Meteorological Research》 SCIE CSCD 2018年第5期758-767,共10页
Biogeophysical effects of land use and land cover (LULC) changes play a significant role in modulating climate on various spatial scales. In this study, a set of recent LULC products with a spatial resolution of 500... Biogeophysical effects of land use and land cover (LULC) changes play a significant role in modulating climate on various spatial scales. In this study, a set of recent LULC products with a spatial resolution of 500 m was developed in China for update in RegCM4 (regional climate model version 4). Two sets of comparative numerical experiments were conducted to study the effects of LULC changes on near-surface temperature simulation. The results show that after LULC changes, areas of crops and mixed woodlands as well as urban areas increase over entire China, accom- panied with greatly expanded mixed farming and forests/field mosaics in southern China, and reduced areas of 1) ir- rigated crops and short grasses in northern China and the Tibetan Plateau, and 2) semi-desert and desert in northwest-em China. Improvements in the LULC data clearly result in more accurate simulations of the near-surface temperat-ure. Specifically, increasing latent heat and longwave albedo due to enhanced LULC in certain areas lead to reduc-tion in land surface temperature (LST), while changes in shortwave albedo and sensible heat also exert a great influ- ence on the LST. Overall, these parameter adjustments reduce the biases in near-surface temperature simulation. 展开更多
关键词 land use and land cover RegCM4 (regional climate model version 4) temperature simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部