期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Compounding effects of human activities and climatic changes on coexistence of oasis-desert ecosystems:Prioritizing resilient decision-making for a riskier world
1
作者 xinWei Yin Wei Liu +11 位作者 Meng Zhu JuTao Zhang Qi Feng haiyang xi LinShan Yang Tuo Han WenJu Cheng YingQing Su BaiTing Zhang YuanYuan Xue Zexia Chen LingGe Wang 《Research in Cold and Arid Regions》 CSCD 2023年第5期219-229,共11页
Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten ... Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten the coexistence of oasis-desert ecosystems is still scarce, especially under the compounding effects of human activities and climatic changes. Here, we assessed the impacts of irrigated agriculture on hydrological regimes in oasisdesert systems, investigated the spatio-temporal variations of soil salinization in irrigated cropland, and evaluated the implications of the interplays of soil salinization and groundwater degradation on the coexistence of oasis-desert ecosystems in northwestern China, based on meaningful modelling approaches and comprehensive measurements over 1995–2020. The results showed that the irrigation return flow coefficient decreased sharply from 0.21 ± 0.09 in the traditional irrigation period to 0.09 ± 0.01 in the water-saving irrigation period. The continuous drop in groundwater tables and significant degradation of groundwater quality are occurring throughout this watershed. The eco-environmental flows are reaching to their limit with watershed closures(i.e.,the drainage from the oasis region into the desert region is being weakened or even eliminated), although these progressions were largely hidden by regional precipitation and streamflow variability. The process of salt migration and accumulation across different landscapes in oasis-desert system is being reshaped, and soil salinization in water-saving agricultural irrigated lands is accelerating with a regional average annual growth rate of18%. The vegetation in this watershed is degrading, and anthropogenic disturbance accelerates this trend. Our results highlight that environmental stress adaptation strategies must account for resilience maintenance to avoid accelerating catastrophic transitions in oasis-desert ecosystems. Determining the optimal oasis scales and formulating the best irrigation management plans are effective and resilient decision-making ways to maintain the coexistence relationship of oasis-desert ecosystem in drylands. 展开更多
关键词 Oasis-desert ecosystems Hydrological regimes Soil salinization Vegetation dynamics Resilient decision-making
下载PDF
Patterns,magnitude,and controlling factors of hydraulic redistribution of soil water by Tamarix ramosissima roots 被引量:12
2
作者 TengFei YU Qi FENG +2 位作者 JianHua SI haiyang xi Wei LI 《Journal of Arid Land》 SCIE CSCD 2013年第3期396-407,共12页
Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to ... Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to the drought tolerance of Tarnarix spp. In this study, data on soil volumetric moisture content (0), lateral root sap flow, and relevant climate variables were used to investigate the patterns, magnitude, and controlling factors of HR of soil water by roots of Tamarix ramosissima Ledeb. in an extremely arid land in Northwest China. Results showed evident diurnal fluctuations in 0 at the depths of 30 and 50 cm, indicating "hydraulic lift" (HL). 0 increased remarkably at 10 and 140 cm but decreased at 30 and 50 cm and slightly changed at 80 cm after rainfall, suggesting a possible "hydraulic descent" (HD). However, no direct evidence was observed in the negative flow of lateral roots, supporting HR (including HL and HD) of T. ramosissima. The HR pathway unlikely occurred via lateral roots; instead, HR possibly occurred through adventitious roots with a diameter of 2-5 mm and a length of 60-100 cm. HR at depths of 20-60 cm ranged from 0.01-1.77 mm/d with an average of 0.43 mm/d, which accounted for an average of 22% of the estimated seasonal total water depletion at 0-160 cm during the growing season. The climate factors, particularly vapor pressure deficit and soil water potential gradient, accounted for at least 33% and 45% of HR variations with depths and years, respectively. In summary, T. ramosissima can be added to the wide list of existing species involved in HR. High levels of HR may represent a considerable fraction of daily soil water depletion and substantially improve plant water status. HR could vary tremendously in terms of years and depths, and this variation could be attributed to climate factors and soil water potential gradient. 展开更多
关键词 drought tolerance phreatophyte hydraulic redistribution root sap flow Tamarix ramosissima
下载PDF
Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions 被引量:9
3
作者 Qi FENG JiaZhong PENG +2 位作者 JianGuo LI haiyang xi JianHua SI 《Journal of Arid Land》 SCIE 2012年第4期378-389,共12页
This paper, based on the analysis and calculation of the groundwater resources in an arid region from 1980 to 2001, put forward the concept of ecological groundwater level threshold for either salinity control or the ... This paper, based on the analysis and calculation of the groundwater resources in an arid region from 1980 to 2001, put forward the concept of ecological groundwater level threshold for either salinity control or the determination of ecological warning. The surveys suggest that soil moisture and soil salinity are the most important environmental factors in determining the distribution and changes in vegetation. The groundwater level threshold of ecological warning can be determined by using a network of groundwater depth observation sites that monitor the environmental moisture gradient as reflected by plant physiological characteristics. According to long-term field observations within the Ejin oases, the groundwater level threshold for salinity control varied between 0.5 m and 1.5 m, and the ecological warning threshold varied between 3.5 m and 4.0 m. The quantity of groundwater re- sources (renewable water resources, ecological water resources, and exploitable water resources) in arid areas can be calculated from regional groundwater level information, without localized hydrogeological data. The concept of groundwater level threshold of ecological warning was established according to water development and water re- sources supply, and available groundwater resources were calculated. The concept not only enriches and broadens the content of groundwater studies, but also helps in predicting the prospects for water resources development. 展开更多
关键词 evaluation water resources Ejin oasis ecological groundwater level groundwater level threshold of ecologicalwarning
下载PDF
How changes of groundwater level affect the desert riparian forest ecosystem in the Ejina Oasis,Northwest China 被引量:1
4
作者 haiyang xi JingTian Zhang +3 位作者 Qi Feng Lu Zhang JianHua Si TengFei Yu 《Research in Cold and Arid Regions》 CSCD 2019年第1期62-80,共19页
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only he... Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin. 展开更多
关键词 groundwater CHANGES DESERT RIPARIAN forest EJINA OASIS WAVES leaf area index(LAI) water budgets
下载PDF
Non-growing season soil CO_2 efflux and its changes in an alpine meadow ecosystem of the Qilian Mountains,Northwest China 被引量:1
5
作者 ZongQiang CHANG xiaoQing LIU +4 位作者 Qi FENG Zongxi CHE haiyang xi YongHong SU JianHua SI 《Journal of Arid Land》 SCIE CSCD 2013年第4期488-499,共12页
Most soil respiration measurements are conducted during the growing season.In tundra and boreal forest ecosystems,cumulative,non-growing season soil CO2 fluxes are reported to be a significant component of these syst... Most soil respiration measurements are conducted during the growing season.In tundra and boreal forest ecosystems,cumulative,non-growing season soil CO2 fluxes are reported to be a significant component of these systems' annual carbon budgets.However,little information exists on soil CO2 efflux during the non-growing season from alpine ecosystems.Therefore,comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of estimating ecosystem carbon budgets,as well as predicting the response of soil CO2 efflux to climate changes.In this study,we measured soil CO2 efflux and its spatial and temporal changes for different altitudes during the non-growing season in an alpine meadow located in the Qilian Mountains,Northwest China.Field experiments on the soil CO2 efflux of alpine meadow from the Qilian Mountains were conducted along an elevation gradient from October 2010 to April 2011.We measured the soil CO2 efflux,and analyzed the effects of soil water content and soil temperature on this measure.The results show that soil CO2 efflux gradually decreased along the elevation gradient during the non-growing season.The daily variation of soil CO2 efflux appeared as a single-peak curve.The soil CO2 efflux was low at night,with the lowest value occurring between 02:00-06:00.Then,values started to rise rapidly between 07:00-08:30,and then descend again between 16:00-18:30.The peak soil CO2 efflux appeared from 11:00 to 16:00.The soil CO2 efflux values gradually decreased from October to February of the next year and started to increase in March.Non-growing season Q10 (the multiplier to the respiration rate for a 10℃ increase in temperature) was increased with raising altitude and average Q10 of the Qilian Mountains was generally higher than the average growing season Q10 of the Heihe River Basin.Seasonally,non-growing season soil CO2 efflux was relatively high in October and early spring and low in the winter.The soil CO2 efflux was positively correlated with soil temperature and soil water content.Our results indicate that in alpine ecosystems,soil CO2 efflux continues throughout the non-growing season,and soil respiration is an important component of annual soil CO2 efflux. 展开更多
关键词 non-growing season soil CO2 efflux spatial and temporal variation alpine meadow Q10 values Qilian Mountains
下载PDF
Comparable water use of two contrasting riparian forests in the lower Heihe River basin, Northwest China 被引量:1
6
作者 Tengfei Yu Qi Feng +3 位作者 Jianhua Si xiaoyou Zhang haiyang xi Chunyan Zhao 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1215-1224,共10页
Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is p... Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is primarily dominated by Tamarix ramosissima Ledeb.and Populus euphratica Oliv.forests.Accordingly,we selected the growing season for 2 years (2012 and 2014) of two such forests under similar meteorological conditions to compare ET using the eddy covariance(EC) technique.During the growing seasons,daily ET of T.ramosissima ranged from 0.3 to 8.0 mm day^(-1) with a mean of 3.6 mm day^(-1),and daily ET of P.euphratica ranged from 0.9 to 7.9 mm day^(-1) with a mean of 4.6 mm day^(-1) for a total of 548 and 707 mm,respectively.The significantly higher ET of the P.euphratica stand was directly linked to high soil evaporation rates under sufficient water availability from irrigation.When the soil evaporation was disregarded,water use was comparable to two contrasting riparian forests,a P.euphratica forest with a total transpiration of 465 mm and a T.ramosissima forest with 473 mm.Regression analysis demonstrated that climate factors accounted for at least 80% of ET variation in both forest types.In conclusion,water use of the riparian forests was low and comparable in this arid region,that suggest the long-term plant adaptation to the local climate and conditions of water availability. 展开更多
关键词 Eddy covariance EVAPOTRANSPIRATION Heihe River basin Riparian forest
下载PDF
Application of geodetector in sensitivity analysis of reference crop evapotranspiration spatial changes in Northwest China
7
作者 WenJu Cheng haiyang xi Sindikubwabo Celestin 《Research in Cold and Arid Regions》 CSCD 2021年第4期314-325,共12页
Reference crop evapotranspiration(ET0)is an important parameter in the research of farmland irrigation management,crop water demand estimation and water balance in scarce data areas,therefore,it is very important to s... Reference crop evapotranspiration(ET0)is an important parameter in the research of farmland irrigation management,crop water demand estimation and water balance in scarce data areas,therefore,it is very important to study the factors affecting the spatial variation of ET0.In this paper,the Penman-Monteith formula was used to calculate ET0 which is the dependent variable of elevation(Elev),daily maximum temperature(T_(max)),daily minimum temperature(Tmin),daily average temperature(T_(mean)),wind speed(U_(2)),sunshine duration(SD)and relative humidity(RH).The sensitivity analysis of ET0 was performed using a Geodetector method based on spatial stratified heterogeneity.The applicability of Geodetector in sensitivity analysis of ET0 was verified by comparing it with existing research results.Results show that RH,Tmax,SD,and Tmean are the main factors affecting ET0 in Northwest China,and RH has the best explanatory power for the spatial distribu‐tion of ET0.Geodetector has a unique advantage in sensitivity analysis,because it can analyze the synergistic effect of two factors on the change of ET0.The interactive detector of Geodetector revealed that the synergistic effect of RH and Tmean on ET0 is very significant,and can explain 89%of the spatial variation of ET0.This research provides a new method for sensitivity analysis of ET0 changes. 展开更多
关键词 reference crop evapotranspiration PENMAN-MONTEITH geodetector sensitivity analysis northwest China
下载PDF
Characterization of groundwater in the Ejina Basin,northwest China:hydrochemical and environmental isotopes approaches
8
作者 YongHong Su Qi Feng +4 位作者 ZongQiang Chang JianHua Si ShengKui Cao haiyang xi Rui Guo 《Research in Cold and Arid Regions》 2010年第6期477-492,共16页
To characterize the groundwater in the Ejina Basin,surface and groundwater samples were collected in May and October of 2002.On-site analyses included temperature,electrical conductance(EC),total alkalinity(as HCO 3) ... To characterize the groundwater in the Ejina Basin,surface and groundwater samples were collected in May and October of 2002.On-site analyses included temperature,electrical conductance(EC),total alkalinity(as HCO 3) by titration,and pH.Chemical analyses were undertaken at the Geochemistry Laboratory of the Cold and Arid Region Environmental and Engineering Institute,Chinese Academy of Sciences,Lanzhou,China.The pH of the groundwater ranged from 7.18 to 8.90 with an average value of 7.72,indicating an alkaline nature.The total dissolved solids(TDS) of the groundwater ranged from 567.5 to 5,954.4 mg/L with an average of 1,543.1 mg/L and a standard deviation of 1,471.8 mg/L.According to the groundwater salinity classification of Robinove et al.(1958),47.4 percent of the samples were brackish and the remainder were fresh water.The ion concentration of the groundwater along the riverbed and near the southern margin of the basin were lower than those farther away from the riverbed.The groundwater in the study area was of Na +-HCO 3 type near the bank of the Heihe River and in the southern margin of the basin,while Na +-SO 4 2-Cl type samples were observed in the terminal lake region.In the desert area the groundwater reached a TDS of 3,000-6,000 mg/L and was predominantly by a Na +-Cl chemistry.Br/Cl for the water of Ejina Basin indicates an evaporite origin for the groundwater with a strongly depleted Br/Cl ratio(average 0.000484).The surface water was slightly enriched in Br/Cl(average 0.000711) compared with groundwater.The calculated saturation index(SI) for calcite and dolomite of the groundwater samples range from 0.89 to 1.31 and 1.67 to 2.67 with averaged 0.24 and 0.61,respectively.About 97 percent of the groundwater samples were kinetically oversaturated with respect to calcite and dolomite,and all the samples were below the equilibrium state with gypsum.Using isotope and hydrochemical analyses,this study investigated the groundwater evolution and its residence time.The groundwater content was mainly determined by the dissolutions of halite,gypsum,and Glauber’s salt(Na 2 SO 4),as well as Na + exchange for Ca 2+,and calcite and dolomite precipitation.With the exception of a few locations,most of the groundwater samples were suitable for irrigation uses.Most of the stable isotope compositions in the groundwater sampled plotted close to the Global Meteoric Water Line(GMWL),indicating that the groundwater was mainly sourced from meteoric water.There was evidence of enrichment of heavy isotopes in the groundwater due to evaporation.Based on the tritium content in atmospheric precipitation and by adopting the exponential-piston model(EPM),the mean residence time of the unconfined aquifer groundwater was evaluated.The results show that these groundwaters have low residence time(12 to 48 years) and are renewable.In contrast,the confined groundwater had 14 C ages estimated by the Pearson model between 4,087 to 9,364 years BP.Isotopic signatures indicated formation of deep confined groundwaters in a colder and wetter climate during the late Pleistocene and Holocene. 展开更多
关键词 water chemistry environmental isotope tritium dating technology groundwater recharge Ejina Basin
下载PDF
Hydrological Characteristics of the Heihe River Basin in the Arid Inland Area of Northwest China
9
作者 Qi Feng Wei Liu +1 位作者 haiyang xi Dongli Liu 《Research in Cold and Arid Regions》 2008年第1期80-91,共12页
The hydrological characteristics of the Heihe River Basin in the arid inland area of northwest China were investigated.The spatial distribution of annual precipitation in the basin indicates that it decreases from eas... The hydrological characteristics of the Heihe River Basin in the arid inland area of northwest China were investigated.The spatial distribution of annual precipitation in the basin indicates that it decreases from east to west and from south to north,and increases with elevation by a gradient of 24.4 mm per hundred meters below 2,810 m a.s.l.,but decreases with elevation by that of 37.0 mm per hundred meters above 2,810 m a.s.l.For the last 50 years,the mountain runoff of the ba-sin has a tendency of increase.Except in the mountain area,the aridity is very high in the basin,and the aridity index ranges from 1.6 to 7.0 at the piedmont,to 9.0~20.0 in the midstream area and up to 40.0 in the downstream Ejin region.It is estimated for the last 50 years that a 1oC increment of annual temperature causes a 21.5 mm increase of evaporation in the mountain area,and the equivalent reduction of mountain runoff is 0.215×109 m3/yr at the Yingluoxia Hydrometric Sta-tion.The estimation shows also that a 1oC increment of annual temperature causes 1,842 mm increase of farmland evapotranspiration in the midstream area,an equivalent of 0.298×109 m3/yr more water consumption.The anthropogenic influence on the hydrological processes and water resources is then discussed. 展开更多
关键词 hydrological processes Heihe River northwest China
下载PDF
干旱区盐碱土微生物特征及其影响因素研究进展
10
作者 卫雨西 陈丽娟 +3 位作者 冯起 席海洋 郭瑞 张成琦 《中国沙漠》 CSCD 北大核心 2024年第3期18-30,共13页
干旱区盐碱土是中国重要的土地资源,对其进行改良利用对于推进中国绿色可持续发展具有重要意义,关系着国家粮食安全与生态安全。微生物作为土壤生态系统的重要组成部分,在改良治理盐碱土、提高植物耐盐性等方面发挥着重要作用。开展干... 干旱区盐碱土是中国重要的土地资源,对其进行改良利用对于推进中国绿色可持续发展具有重要意义,关系着国家粮食安全与生态安全。微生物作为土壤生态系统的重要组成部分,在改良治理盐碱土、提高植物耐盐性等方面发挥着重要作用。开展干旱区盐碱土微生物多样性、群落结构、功能特征及其影响因素的深入研究,可以为干旱区盐碱土的修复和生态重建提供微生物方面的重要参考。本文整理了干旱区盐碱土的概况,分析盐碱土中的微生物多样性、群落结构和生态功能特征,梳理盐碱环境对土壤微生物群落的影响因素,提出干旱区盐碱土微生物研究中存在的问题及今后的发展方向,以期为中国干旱区盐碱土开发利用和微生物资源管理提供参考。 展开更多
关键词 干旱区 盐碱化 土壤微生物 群落结构 功能基因
原文传递
乌兰布和沙漠沿黄河段土壤水盐空间分异特征及其成因
11
作者 雍天 张金霞 +3 位作者 陈丽娟 席海洋 张斌武 甘开元 《中国沙漠》 CSCD 北大核心 2024年第3期247-258,共12页
乌兰布和沙漠沿黄河段土壤盐碱化治理对保障黄河流域生态安全、实现高质量发展具有重要意义。本文通过测定乌兰布和沙漠沿黄河段45个采样点的土壤水盐数据,运用传统统计学和地统计学方法对该区土壤水盐空间分异特征及土壤盐碱化成因进... 乌兰布和沙漠沿黄河段土壤盐碱化治理对保障黄河流域生态安全、实现高质量发展具有重要意义。本文通过测定乌兰布和沙漠沿黄河段45个采样点的土壤水盐数据,运用传统统计学和地统计学方法对该区土壤水盐空间分异特征及土壤盐碱化成因进行分析。结果表明:乌兰布和沙漠沿黄河段土壤水盐碱含量整体呈现出自西向东、由南到北逐渐增大的趋势;其中非盐碱土占该区总面积的41.37%,轻、中、重度盐土分别占该区总面积的34.11%、10.56%和8.74%,极重度盐碱土出现在巴彦木仁苏木附近,占该区总面积的5.22%;而盐碱土以硫酸盐类(46.67%)和氯化物类(53.33%)为主;土壤质地对土壤盐分的影响最显著,其次为土壤全碳含量和含水量;气候干旱、降水稀少、黄河引流灌溉与地下水位抬升是乌兰布和沙漠沿黄河段土壤盐碱化的主要原因。 展开更多
关键词 乌兰布和沙漠 土壤水分 土壤盐分 空间分布
原文传递
乌兰布和沙漠沿黄河段植物群落特征及空间分异 被引量:2
12
作者 甘开元 张金霞 +4 位作者 陈丽娟 席海洋 张斌武 雍天 卫雨西 《中国沙漠》 CSCD 北大核心 2023年第4期180-190,共11页
乌兰布和沙漠是黄河流域风沙最活跃的区域。本文以乌兰布和沙漠沿黄河段植物为研究对象,分析了植物群落特征的空间差异性及地上和地下植物含水率和生物量的分异规律。结果表明:乌兰布和沙漠沿黄河段典型植物物种组成单一,植物多样性低,S... 乌兰布和沙漠是黄河流域风沙最活跃的区域。本文以乌兰布和沙漠沿黄河段植物为研究对象,分析了植物群落特征的空间差异性及地上和地下植物含水率和生物量的分异规律。结果表明:乌兰布和沙漠沿黄河段典型植物物种组成单一,植物多样性低,Shannon-Wiener多样性指数最高为0.80。靠近黄河沿岸草本植物更具优势,平均植物含水率最高(最大值为80.6%);靠近沙漠腹地,灌木植物更具优势,灌木含水率高于黄河沿岸处。从黄河沿岸至沙漠腹地,草本生物量逐渐减少,但地上部分含水率增大。造成植物特征空间分异的关键影响因子是土壤含水量和含盐量,较高的土壤含水量对植物生长有促进作用,高盐分土壤环境对草本植物生长有抑制作用,对灌木植物影响较小。 展开更多
关键词 乌兰布和沙漠 植物多样性 植物含水率 生物量 土壤水盐
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部