The key to the development of sodium ion battery is materials with a high rate capacity and cycle stability. Conducting coating is an efficient approach to improve electrochemical performance. As a case study, the Na_...The key to the development of sodium ion battery is materials with a high rate capacity and cycle stability. Conducting coating is an efficient approach to improve electrochemical performance. As a case study, the Na_3V_2(PO_4)_3@PEDOT composite was prepared through an in-situ self-decorated conducting polymer route without further calcination. The Na_3V_2(PO_4)_3 electrode with a 7%poly(3,4-ethylenedioxythiophene)(PEDOT) coating can deliver an initial reversible capacity of 100 mA h g^(-1) at 1 cycle, and 82%capacity retention over 200 cycles. The results also show that the Na_3V_2(PO_4)_3 electrode without and with a thick PEDOT coating exhibits poor electrochemical performance, indicating that an appropriate coating layer is important for improving electronic conductivity and regulating Na-ion insertion. Therefore, this work offers possibility to promote the electrochemical performance of poor-conducting materials in sodium-ion batteries using an in-situ self-decorated conducting polymer.展开更多
基金supported by the National Key Research Program of China (2016YFB0100400)the National Natural Science Foundation of China (21373155, 21333007)
文摘The key to the development of sodium ion battery is materials with a high rate capacity and cycle stability. Conducting coating is an efficient approach to improve electrochemical performance. As a case study, the Na_3V_2(PO_4)_3@PEDOT composite was prepared through an in-situ self-decorated conducting polymer route without further calcination. The Na_3V_2(PO_4)_3 electrode with a 7%poly(3,4-ethylenedioxythiophene)(PEDOT) coating can deliver an initial reversible capacity of 100 mA h g^(-1) at 1 cycle, and 82%capacity retention over 200 cycles. The results also show that the Na_3V_2(PO_4)_3 electrode without and with a thick PEDOT coating exhibits poor electrochemical performance, indicating that an appropriate coating layer is important for improving electronic conductivity and regulating Na-ion insertion. Therefore, this work offers possibility to promote the electrochemical performance of poor-conducting materials in sodium-ion batteries using an in-situ self-decorated conducting polymer.