In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
The worldwide mortality rate due to cancer is second only to cardiovascular diseases.The discovery of image processing,latest artificial intelligence techniques,and upcoming algorithms can be used to effectively diagn...The worldwide mortality rate due to cancer is second only to cardiovascular diseases.The discovery of image processing,latest artificial intelligence techniques,and upcoming algorithms can be used to effectively diagnose and prognose cancer faster and reduce the mortality rate.Efficiently applying these latest techniques has increased the survival chances during recent years.The research community is making significant continuous progress in developing automated tools to assist dermatologists in decision making.The datasets used for the experimentation and analysis are ISBI 2016,ISBI 2017,and HAM 10000.In this work pertained models are used to extract the efficient feature.The pertained models applied are ResNet,InceptionV3,and classical feature extraction techniques.Before that,efficient preprocessing is conducted on dermoscopic images by applying various data augmentation techniques.Further,for classification,convolution neural networks were implemented.To classify dermoscopic images on HAM 1000 Dataset,the maximum attained accuracy is 89.30%for the proposed technique.The other parameters for measuring the performance attained 87.34%(Sen),86.33%(Pre),88.44%(F1-S),and 11.30%false-negative rate(FNR).The class with the highest TP rate is 97.6%for Melanoma;whereas,the lowest TP rate was for the Dermatofibroma class.For dataset ISBI2016,the accuracy achieved is 97.0%with the proposed classifier,whereas the other parameters for validation are 96.12%(Sen),97.01%(Pre),96.3%(F1-S),and further 3.7%(FNR).For the experiment with the ISBI2017 dataset,Sen,Pre,F1-S,and FNR were 93.9%,94.9%,93.9%,and 5.2%,respectively.展开更多
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
基金This research project was supported by a grant from the“Research Center of the Female Scientific and Medical Colleges,”Deanship of Scientific Research,King Saud University。
文摘The worldwide mortality rate due to cancer is second only to cardiovascular diseases.The discovery of image processing,latest artificial intelligence techniques,and upcoming algorithms can be used to effectively diagnose and prognose cancer faster and reduce the mortality rate.Efficiently applying these latest techniques has increased the survival chances during recent years.The research community is making significant continuous progress in developing automated tools to assist dermatologists in decision making.The datasets used for the experimentation and analysis are ISBI 2016,ISBI 2017,and HAM 10000.In this work pertained models are used to extract the efficient feature.The pertained models applied are ResNet,InceptionV3,and classical feature extraction techniques.Before that,efficient preprocessing is conducted on dermoscopic images by applying various data augmentation techniques.Further,for classification,convolution neural networks were implemented.To classify dermoscopic images on HAM 1000 Dataset,the maximum attained accuracy is 89.30%for the proposed technique.The other parameters for measuring the performance attained 87.34%(Sen),86.33%(Pre),88.44%(F1-S),and 11.30%false-negative rate(FNR).The class with the highest TP rate is 97.6%for Melanoma;whereas,the lowest TP rate was for the Dermatofibroma class.For dataset ISBI2016,the accuracy achieved is 97.0%with the proposed classifier,whereas the other parameters for validation are 96.12%(Sen),97.01%(Pre),96.3%(F1-S),and further 3.7%(FNR).For the experiment with the ISBI2017 dataset,Sen,Pre,F1-S,and FNR were 93.9%,94.9%,93.9%,and 5.2%,respectively.