期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Measuring End-to-End Delay in Low Energy SDN IoT Platform
1
作者 Mykola beshley Natalia Kryvinska +2 位作者 halyna beshley Orest Kochan Leonard Barolli 《Computers, Materials & Continua》 SCIE EI 2022年第1期19-41,共23页
In this paper,we developed a new customizable low energy Software Defined Networking(SDN)based Internet of Things(IoT)platform that can be reconfigured according to the requirements of the target IoT applications.Tech... In this paper,we developed a new customizable low energy Software Defined Networking(SDN)based Internet of Things(IoT)platform that can be reconfigured according to the requirements of the target IoT applications.Technically,the platform consists of a set of low cost and energy efficient single-board computers,which are interconnected within a network with the software defined configuration.The proposed SDN switch is deployed on Raspberry Pi 3 board usingOpen vSwitch(OvS)software,while theFloodlight controller is deployed on the Orange Pi Prime board.We firstly presented and implemented the method formeasuring a delay introduced by each component of the IoT infrastructure,ranging from the sensor,the core of SDN,the IoT broker,to an IoT subscriber.Thus,we presented the approach for estimating energy efficiency for SDN based IoT platform proportional to the traffic.The experiments carried out on a real SDN topology based on single-board computers show that our approach not only saves up to 53.56%of energy at low traffic intensity,but also provides QoS guarantee for IoT applications. 展开更多
关键词 Internet of things software defined networking openflow open vswitch raspberry-pi
下载PDF
Centralized QoS Routing Model for Delay/Loss Sensitive Flows at the SDN-IoT Infrastructure
2
作者 Mykola beshley Natalia Kryvinska +2 位作者 halyna beshley Mykhailo Medvetskyi Leonard Barolli 《Computers, Materials & Continua》 SCIE EI 2021年第12期3727-3748,共22页
The rapidly increasing number of Internet of Things(IoT)devices and Quality of Service(QoS)requirements have made the provisioning of network solutions to meet this demand a major research topic.Providing fast and rel... The rapidly increasing number of Internet of Things(IoT)devices and Quality of Service(QoS)requirements have made the provisioning of network solutions to meet this demand a major research topic.Providing fast and reliable routing paths based on the QoS requirements of IoT devices is very important task for Industry 4.0.The software-defined network is one of the most current interesting research developments,offering an efficient and effective solution for centralized control and network intelligence.A new SDN-IoT paradigm has been proposed to improve network QoS,taking advantage of SDN architecture in IoT networks.At the present time,most publish-subscribe IoT platforms assume the same QoS requirements for all customers.However,in many real-world scenarios of IoT applications,different subscribers may have different E2E delay requirements.Providing reliable differentiated services has become a relevant problem.For this we developed a technique for classifying IoT flows with the individual subscriber recommendation on the importance of certain parameters for particular classes of traffic taken into account.To improve the QoS for mission-critical IoT applications in large-scale SDN-IoT infrastructure,we focused on optimizing routing in the SDN.For this purpose,a centralized routing model based on QoS parameters and IoT priority flow for the SDN was proposed and implemented.We have compared the proposed routing model with the state-of-art deterministic multiconstrained centralized QoS routing model(DMCQR).The developed centralized routing model in comparison with the known DMCQR flow routing achieved better balance of channel resources load due to rational choice of transmission paths for different traffic.And it was possible to reduce up to 3 times the average delay of real time flows service from end to end,for which with the existing DMCQR routing model the permissible delay rates were not met. 展开更多
关键词 Internet of things software defined networking quality of services routing internet of video things
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部