期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bridging finite element and deep learning: High-resolution stress distribution prediction in structural components 被引量:1
1
作者 hamed bolandi Xuyang LI +2 位作者 Talal SALEM Vishnu Naresh BODDETI Nizar LAJNEF 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第11期1365-1377,共13页
Finite-element analysis(FEA)for structures has been broadly used to conduct stress analysis of various civil and mechanical engineering structures.Conventional methods,such as FEA,provide high fidelity results but req... Finite-element analysis(FEA)for structures has been broadly used to conduct stress analysis of various civil and mechanical engineering structures.Conventional methods,such as FEA,provide high fidelity results but require the solution of large linear systems that can be computationally intensive.Instead,Deep Learning(DL)techniques can generate results significantly faster than conventional run-time analysis.This can prove extremely valuable in real-time structural assessment applications.Our proposed method uses deep neural networks in the form of convolutional neural networks(CNN)to bypass the FEA and predict high-resolution stress distributions on loaded steel plates with variable loading and boundary conditions.The CNN was designed and trained to use the geometry,boundary conditions,and load as input to predict the stress contours.The proposed technique’s performance was compared to finite-element simulations using a partial differential equation(PDE)solver.The trained DL model can predict the stress distributions with a mean absolute error of 0.9%and an absolute peak error of 0.46%for the von Mises stress distribution.This study shows the feasibility and potential of using DL techniques to bypass FEA for stress analysis applications. 展开更多
关键词 Deep Learning finite element analysis stress contours structural components
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部