Understanding the factors influencing the distribution of plant species is crucial for enhancing the management of endangered ecosystems. This study investigated the response of Hedysarum criniferum Boiss, an endemic ...Understanding the factors influencing the distribution of plant species is crucial for enhancing the management of endangered ecosystems. This study investigated the response of Hedysarum criniferum Boiss, an endemic and endangered species to 25 environmental variables within its habitats with an area of 2.95×10^(5) km^(2) in arid and semi-arid rangelands of Iran. The purpose of this research is to identify the key environmental factors affecting the distribution and habitat preferences of H. criniferum for further conservation and restoration of the species. To predict the occurrence of H. criniferum and explore its relationship with environmental factors, we employed the best subset regression analysis, the hierarchical classification, and the extended Huisman-Olf-Fresco(eHOF) model. The results showed that four environmental variables, i.e., gravel content, pH, annual minimum temperature, and mean annual temperature showed significant correlations with the canopy cover of H. criniferum(P<0.05). The probability of H. criniferum occurrence increased with higher precipitation and elevation, while it decreased with higher mean annual temperature, annual minimum temperature, and gravel content. The species' response curves and their optimal values, as assessed by the eHOF model, indicated that the response to mean annual temperature, ranging from 12℃ to 16℃, was optimal at 13℃. The response to mean annual precipitation, within a range of 150–650 mm, was optimal at 650 mm. Elevation responses, spanning from 1546 to 2450 m, showed an optimum at 2450 m. Regarding soil characteristics, the response to gravel content, ranging from 13.0%–48.0%, demonstrated an optimal value at 20.0%. The pH levels, varying from 7.5 to 8.2, prompted a sine-shaped response with an optimal pH of 8.0. These findings provide valuable insights for predicting species occurrence and identifying suitable locations for restoration programs. Our study underscores the importance of considering multiple environmental variables in habitat suitability assessments. By incorporating these broader considerations, we can further refine predictive models and enhance conservation efforts aimed at restoring habitats conducive to the luxuriance of endangered species like H. criniferum.展开更多
基金funded by the Isfahan University of Technology,Iran.
文摘Understanding the factors influencing the distribution of plant species is crucial for enhancing the management of endangered ecosystems. This study investigated the response of Hedysarum criniferum Boiss, an endemic and endangered species to 25 environmental variables within its habitats with an area of 2.95×10^(5) km^(2) in arid and semi-arid rangelands of Iran. The purpose of this research is to identify the key environmental factors affecting the distribution and habitat preferences of H. criniferum for further conservation and restoration of the species. To predict the occurrence of H. criniferum and explore its relationship with environmental factors, we employed the best subset regression analysis, the hierarchical classification, and the extended Huisman-Olf-Fresco(eHOF) model. The results showed that four environmental variables, i.e., gravel content, pH, annual minimum temperature, and mean annual temperature showed significant correlations with the canopy cover of H. criniferum(P<0.05). The probability of H. criniferum occurrence increased with higher precipitation and elevation, while it decreased with higher mean annual temperature, annual minimum temperature, and gravel content. The species' response curves and their optimal values, as assessed by the eHOF model, indicated that the response to mean annual temperature, ranging from 12℃ to 16℃, was optimal at 13℃. The response to mean annual precipitation, within a range of 150–650 mm, was optimal at 650 mm. Elevation responses, spanning from 1546 to 2450 m, showed an optimum at 2450 m. Regarding soil characteristics, the response to gravel content, ranging from 13.0%–48.0%, demonstrated an optimal value at 20.0%. The pH levels, varying from 7.5 to 8.2, prompted a sine-shaped response with an optimal pH of 8.0. These findings provide valuable insights for predicting species occurrence and identifying suitable locations for restoration programs. Our study underscores the importance of considering multiple environmental variables in habitat suitability assessments. By incorporating these broader considerations, we can further refine predictive models and enhance conservation efforts aimed at restoring habitats conducive to the luxuriance of endangered species like H. criniferum.