The application of organic amendments in upland soils may influence soil carbon (C) and nitrogen (N) mineralization, which are very important for understanding plant nutrition. However, the kinetics of C and N mineral...The application of organic amendments in upland soils may influence soil carbon (C) and nitrogen (N) mineralization, which are very important for understanding plant nutrition. However, the kinetics of C and N mineralization from organically amended upland purplish soils has been poorly studied. Therefore, this study investigates C and N mineralization kinetics in organically amended upland purplish soils. Incubation experiments were conducted using soil samples collected from experimental plots that have been under long-term organic amendment fertilization, which includes: Organic manure (OM), crop residues (CR), combined organic manure with inorganic fertilizers (OMNPK), combined crop residue with inorganic fertilizers (CRNPK), conventional inorganic fertilizer (NPK), and no fertilizer (CK). The results showed that organically amended treatments increased C and N mineralization rates by 8 - 24% and 17 - 33%, respectively, compared with NPK. Likewise, the amount of potentially mineralizable carbon (Co) and nitrogen (No) increased by 4 - 9% and 15 - 20%, respectively, compared to the conventional NPK treatment. The rate constants for labile C (kC) and N (kN) were 6 - 29% and 3 - 27% higher than the NPK treatment, respectively. In addition, the initial potential rate of C (Co × kC) and N (No × kN) in organically amended soils were 10 - 37% and 18 - 52% higher compared to NPK. This study tried to show that the mechanisms of N supply was direct application of mineral N fertilizer and mineralization of organic N, while the N retention was reducing soil active N loss and storing more active N in cropland of purplish soil. These results suggest that the long-term application of organic amendments to upland soils may increase nutrient bioavailability.展开更多
Nitrogen loss from purple soil can lead to large negative impacts to the environment considering the wide distribution of this soil type in the upper reaches of the Yangtze River.Therefore,nitrogen loss patterns from ...Nitrogen loss from purple soil can lead to large negative impacts to the environment considering the wide distribution of this soil type in the upper reaches of the Yangtze River.Therefore,nitrogen loss patterns from sloping cropland of purple soil in the Sichuan Basin with the following fertilization regimes were studied in a wheat-maize rotation system:100%organic fertilizer(OM),using pig manure to replace 30%of mineral N(OMNPK)and crop residue to replace 15%of the mineral N(CRNPK)plus standard mineral fertilization(NPK)and no fertilizer control.The cumulative hydrological N loss could be as high as 45 kg·ha^(−1) N.The interflow accounted for up to 90%of the total N loss followed by sediment and overland flow losses.The high N loss via interflow found in this study highlighting that sloping cropland of purple soil may be one of the hot spots of N leaching.Compared to the NPK regime,organic substitution regimes(i.e.,OM,OMNPK and CRNPK)decreased total hydrological N loss loadings by 30%−68%.In addition,they can maintain annual crop yields and decrease yield-scaled total hydrological N losses by 18%−71%.In conclusion,long-term substitution of mineral N with organic amendments can maintain high crop productivity and reduce environmental N loss loadings,and thereby recommended as good N management practices to minimize the risk of agricultural non-point source pollution in the purple soil region of China.展开更多
文摘The application of organic amendments in upland soils may influence soil carbon (C) and nitrogen (N) mineralization, which are very important for understanding plant nutrition. However, the kinetics of C and N mineralization from organically amended upland purplish soils has been poorly studied. Therefore, this study investigates C and N mineralization kinetics in organically amended upland purplish soils. Incubation experiments were conducted using soil samples collected from experimental plots that have been under long-term organic amendment fertilization, which includes: Organic manure (OM), crop residues (CR), combined organic manure with inorganic fertilizers (OMNPK), combined crop residue with inorganic fertilizers (CRNPK), conventional inorganic fertilizer (NPK), and no fertilizer (CK). The results showed that organically amended treatments increased C and N mineralization rates by 8 - 24% and 17 - 33%, respectively, compared with NPK. Likewise, the amount of potentially mineralizable carbon (Co) and nitrogen (No) increased by 4 - 9% and 15 - 20%, respectively, compared to the conventional NPK treatment. The rate constants for labile C (kC) and N (kN) were 6 - 29% and 3 - 27% higher than the NPK treatment, respectively. In addition, the initial potential rate of C (Co × kC) and N (No × kN) in organically amended soils were 10 - 37% and 18 - 52% higher compared to NPK. This study tried to show that the mechanisms of N supply was direct application of mineral N fertilizer and mineralization of organic N, while the N retention was reducing soil active N loss and storing more active N in cropland of purplish soil. These results suggest that the long-term application of organic amendments to upland soils may increase nutrient bioavailability.
基金supported by the National Natural Science Foundation of China(U20A20107 and 42007100)the Special Assistant Researcher Foundation of the Chinese Academy of Sciences(Zhiyuan Yao)the IMHE Youth S&T Foundation(SDS-QN-2101)。
文摘Nitrogen loss from purple soil can lead to large negative impacts to the environment considering the wide distribution of this soil type in the upper reaches of the Yangtze River.Therefore,nitrogen loss patterns from sloping cropland of purple soil in the Sichuan Basin with the following fertilization regimes were studied in a wheat-maize rotation system:100%organic fertilizer(OM),using pig manure to replace 30%of mineral N(OMNPK)and crop residue to replace 15%of the mineral N(CRNPK)plus standard mineral fertilization(NPK)and no fertilizer control.The cumulative hydrological N loss could be as high as 45 kg·ha^(−1) N.The interflow accounted for up to 90%of the total N loss followed by sediment and overland flow losses.The high N loss via interflow found in this study highlighting that sloping cropland of purple soil may be one of the hot spots of N leaching.Compared to the NPK regime,organic substitution regimes(i.e.,OM,OMNPK and CRNPK)decreased total hydrological N loss loadings by 30%−68%.In addition,they can maintain annual crop yields and decrease yield-scaled total hydrological N losses by 18%−71%.In conclusion,long-term substitution of mineral N with organic amendments can maintain high crop productivity and reduce environmental N loss loadings,and thereby recommended as good N management practices to minimize the risk of agricultural non-point source pollution in the purple soil region of China.