期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamical Behaviors of Nonlinear Coronavirus (COVID-19) Model with Numerical Studies 被引量:3
1
作者 Khaled A.Gepreel Mohamed S.Mohamed +1 位作者 hammad alotaibi Amr M.S.Mahdy 《Computers, Materials & Continua》 SCIE EI 2021年第4期675-686,共12页
The development of mathematical modeling of infectious diseases is a key research area in various elds including ecology and epidemiology.One aim of these models is to understand the dynamics of behavior in infectious... The development of mathematical modeling of infectious diseases is a key research area in various elds including ecology and epidemiology.One aim of these models is to understand the dynamics of behavior in infectious diseases.For the new strain of coronavirus(COVID-19),there is no vaccine to protect people and to prevent its spread so far.Instead,control strategies associated with health care,such as social distancing,quarantine,travel restrictions,can be adopted to control the pandemic of COVID-19.This article sheds light on the dynamical behaviors of nonlinear COVID-19 models based on two methods:the homotopy perturbation method(HPM)and the modied reduced differential transform method(MRDTM).We invoke a novel signal ow graph that is used to describe the COVID-19 model.Through our mathematical studies,it is revealed that social distancing between potentially infected individuals who are carrying the virus and healthy individuals can decrease or interrupt the spread of the virus.The numerical simulation results are in reasonable agreement with the study predictions.The free equilibrium and stability point for the COVID-19 model are investigated.Also,the existence of a uniformly stable solution is proved. 展开更多
关键词 Nonlinear COVID-19 model equilibrium point stability existence of uniformly stable signal ow graph homotopy perturbation method reduced differential transform method
下载PDF
Numerical Treatment of MHD Flow of Casson Nanofluid via Convectively Heated Non-Linear Extending Surface with Viscous Dissipation and Suction/Injection Effects 被引量:1
2
作者 hammad alotaibi Saeed Althubiti +1 位作者 Mohamed R.Eid K.L.Mahny 《Computers, Materials & Continua》 SCIE EI 2021年第1期229-245,共17页
This paper introduces the effect of heat absorption(generation)and suction(injection)on magnetohydrodynamic(MHD)boundary-layer flow of Casson nanofluid(CNF)via a non-linear stretching surface with the viscous dissipat... This paper introduces the effect of heat absorption(generation)and suction(injection)on magnetohydrodynamic(MHD)boundary-layer flow of Casson nanofluid(CNF)via a non-linear stretching surface with the viscous dissipation in two dimensions.By utilizing the similarity transformations,the leading PDEs are transformed into a set of ODEs with adequate boundary conditions and then resolved numerically by(4–5)^(th)-order Runge-Kutta Fehlberg procedure based on the shooting technique.Numerical computations are carried out by Maple 15 software.With the support of graphs,the impact of dimensionless control parameters on the nanoparticle concentration profiles,the temperature,and the flow velocity are studied.Other parameters of interest,such as the skin friction coefficient,heat,and mass transport at the diverse situation and dependency of various parameters are inspected through tables and graphs.Additionally,it is verified that the numerical computations with the reported earlier studies are in an excellent approval.It is found that the heat and mass transmit rates are enhanced with the increasing values of the power-index and the suction(blowing)parameter,whilst are reduced with the boosting Casson and the heat absorption(generation)parameters.Also,the drag force coefficient is an increasing function of the powerindex and a reduction function of Casson parameter. 展开更多
关键词 Casson nanofluid viscous dissipation MHD heat generation suction/injection
下载PDF
An Approximate Numerical Methods for Mathematical and Physical Studies for Covid-19 Models
3
作者 hammad alotaibi Khaled A.Gepreel +1 位作者 Mohamed S.Mohamed Amr M.S.Mahdy 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1147-1163,共17页
The advancement in numerical models of serious resistant illnesses is a key research territory in different fields including the nature and the study of disease transmission.One of the aims of these models is to comp... The advancement in numerical models of serious resistant illnesses is a key research territory in different fields including the nature and the study of disease transmission.One of the aims of these models is to comprehend the elements of conduction of these infections.For the new strain of Covid-19(Coronavirus),there has been no immunization to protect individuals from the virus and to forestall its spread so far.All things being equal,control procedures related to medical services,for example,social distancing or separation,isolation,and travel limitations can be adjusted to control this pandemic.This article reveals some insights into the dynamic practices of nonlinear Coronavirus models dependent on the homotopy annoyance strategy(HPM).We summon a novel sign stream chart that is utilized to depict the Coronavirus model.Through the numerical investigations,it is uncovered that social separation of the possibly tainted people who might be conveying the infection and the healthy virus-free people can diminish or interrupt the spread of the infection.The mathematical simulation results are highly concurrent with the statistical forecasts.The free balance and dependability focus for the Coronavirus model is discussed and the presence of a consistently steady arrangement is demonstrated. 展开更多
关键词 Covid-19 model optimal control existence of uniformly stable signal stream chart homotopy perturbation technique
下载PDF
Variable viscosity effects on the flow of MHD hybrid nanofluid containing dust particles over a needle with Hall current——a Xue model exploration
4
作者 Muhammad Ramzan hammad alotaibi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第5期121-131,共11页
This study scrutinizes the flow of engine oil-based suspended carbon nanotubes magnetohydrodynamics(MHD)hybrid nanofluid with dust particles over a thin moving needle following the Xue model.The analysis also incorpor... This study scrutinizes the flow of engine oil-based suspended carbon nanotubes magnetohydrodynamics(MHD)hybrid nanofluid with dust particles over a thin moving needle following the Xue model.The analysis also incorporates the effects of variable viscosity with Hall current.For heat transfer analysis,the effects of the Cattaneo–Christov theory and heat generation/absorption with thermal slip are integrated into the temperature equation.The Tiwari–Das nanofluid model is used to develop the envisioned mathematical model.Using similarity transformation,the governing equations for the flow are translated into ordinary differential equations.The bvp4c method based on Runge–Kutta is used,along with a shooting approach.Graphs are used to examine and depict the consequences of significant parameters on involved profiles.The results revealed that the temperature of the fluid and boundary layer thickness is diminished as the solid volume fraction is raised.Also,with an enhancement in the variable viscosity parameter,the velocity distribution becomes more pronounced.The results are substantiated by assessing them with an available study. 展开更多
关键词 hybrid nanofluid dusty fluid variable viscosity Cattaneo-Christov heat flux model Hall current
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部