Autism spectrum disorder(ASD)is a challenging and complex neurodevelopment syndrome that affects the child’s language,speech,social skills,communication skills,and logical thinking ability.The early detection of ASD ...Autism spectrum disorder(ASD)is a challenging and complex neurodevelopment syndrome that affects the child’s language,speech,social skills,communication skills,and logical thinking ability.The early detection of ASD is essential for delivering effective,timely interventions.Various facial features such as a lack of eye contact,showing uncommon hand or body movements,bab-bling or talking in an unusual tone,and not using common gestures could be used to detect and classify ASD at an early stage.Our study aimed to develop a deep transfer learning model to facilitate the early detection of ASD based on facial fea-tures.A dataset of facial images of autistic and non-autistic children was collected from the Kaggle data repository and was used to develop the transfer learning AlexNet(ASDDTLA)model.Our model achieved a detection accuracy of 87.7%and performed better than other established ASD detection models.Therefore,this model could facilitate the early detection of ASD in clinical practice.展开更多
文摘Autism spectrum disorder(ASD)is a challenging and complex neurodevelopment syndrome that affects the child’s language,speech,social skills,communication skills,and logical thinking ability.The early detection of ASD is essential for delivering effective,timely interventions.Various facial features such as a lack of eye contact,showing uncommon hand or body movements,bab-bling or talking in an unusual tone,and not using common gestures could be used to detect and classify ASD at an early stage.Our study aimed to develop a deep transfer learning model to facilitate the early detection of ASD based on facial fea-tures.A dataset of facial images of autistic and non-autistic children was collected from the Kaggle data repository and was used to develop the transfer learning AlexNet(ASDDTLA)model.Our model achieved a detection accuracy of 87.7%and performed better than other established ASD detection models.Therefore,this model could facilitate the early detection of ASD in clinical practice.