期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Hybrid ANN-GWO Algorithm for Prediction of Heart Disease 被引量:4
1
作者 hamza turabieh 《American Journal of Operations Research》 2016年第2期136-146,共11页
The paper investigates the powerful of hybridizing two computational intelligence methods viz., Gray Wolf Optimization (GWO) and Artificial Neural Networks (ANN) for prediction of heart disease. Gray wolf optimization... The paper investigates the powerful of hybridizing two computational intelligence methods viz., Gray Wolf Optimization (GWO) and Artificial Neural Networks (ANN) for prediction of heart disease. Gray wolf optimization is a global search method while gradient-based back propagation method is a local search one. The proposed algorithm implies the ability of ANN to find a relationship between the input and the output variables while the stochastic search ability of GWO is used for finding the initial optimal weights and biases of the ANN to reduce the probability of ANN getting stuck at local minima and slowly converging to global optimum. For evaluation purpose, the performance of hybrid model (ANN-GWO) was compared with standard back-propagation neural network (BPNN) using Root Mean Square Error (RMSE). The results demonstrate that the proposed model increases the convergence speed and the accuracy of prediction. 展开更多
关键词 Artificial Neural Network Gray Wolf Optimizer BACK-PROPAGATION Heart Disease
下载PDF
Generalized Oppositional Moth Flame Optimization with Crossover Strategy:An Approach for Medical Diagnosis
2
作者 Jianfu Xia Hongliang Zhang +4 位作者 Rizeng Li Huiling Chen hamza turabieh Majdi Mafarja Zhifang Pan 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第4期991-1010,共20页
In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimu... In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimum easily when facing the multi-dimensional and high-dimensional optimization problems.Therefore,in this work,a generalized oppositional MFO with crossover strategy,named GCMFO,is presented to overcome the mentioned defects.In the proposed GCMFO,GOBL is employed to increase the population diversity and expand the search range in the initialization and iteration jump phase based on the jump rate;crisscross search(CC)is adopted to promote the exploitation and/or exploration ability of MFO.The proposed algorithm’s performance is estimated by organizing a series of experiments;firstly,the CEC2017 benchmark set is adopted to evaluate the performance of GCMFO in tackling high-dimensional and multimodal problems.Secondly,GCMFO is applied to handle multilevel thresholding image segmentation problems.At last,GCMFO is integrated into kernel extreme learning machine classifier to deal with three medical diagnosis cases,including the appendicitis diagnosis,overweight statuses diagnosis,and thyroid cancer diagnosis.Experimental results and discussions show that the proposed approach outperforms the original MFO and other state-of-the-art algorithms on both convergence speed and accuracy.It also indicates that the presented GCMFO has a promising potential for application. 展开更多
关键词 nature-inspired algorithm moth-flame optimization generalized opposition-based learning crisscross search medical diagnosis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部