The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferenc...The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.展开更多
在城市中应用微动H/V谱比方法面对大量且复杂的人文噪声干扰,需要对噪声强度较大的微动数据进行去噪处理或信号分析。本文针对现有方法难以处理干扰较大的微动数据以及信号提取过程繁琐的问题,提出基于XGBoost(extreme gradient boosti...在城市中应用微动H/V谱比方法面对大量且复杂的人文噪声干扰,需要对噪声强度较大的微动数据进行去噪处理或信号分析。本文针对现有方法难以处理干扰较大的微动数据以及信号提取过程繁琐的问题,提出基于XGBoost(extreme gradient boosting)的多重加权谱比降噪方法。首先对采集的微动数据进行幅值和频率分析,建立幅值加权谱比、频率加权谱比和多重加权谱比;然后根据建立的多重加权谱比,通过XGBoost方法获得降噪后的谱比曲线。将本文方法与传统STA/LTA(short time average/long time average)方法进行实际高噪声数据对比分析,结果表明相比于STA/LTA方法,本文方法对高噪声数据提取效果更好。展开更多
In view of the relative positioning problem between non-regular quadrilateral grids and regular rectangle grid nodes in the wave front construction method, concrete realization problems with four grid positioning meth...In view of the relative positioning problem between non-regular quadrilateral grids and regular rectangle grid nodes in the wave front construction method, concrete realization problems with four grid positioning methods (vector cross product judgment, angle sum, intersection-point, and signs comparison algorithms) in wave front construction which are commonly used in computer graphics are compared and analyzed in this paper. Based on the stability analysis of the location method, the calculation examples show that the vector cross product judgment method is faster and more accurate than other methods in the realization of the relative positioning between non-regular quadrilateral grids and regular rectangle grid nodes in wave front construction. It provides precise grid point attribute values for the next steps of migration and demigration.展开更多
基金Supported by projects of National Natural Science Foundation of China(No.42074150)National Key Research and Development Program of China(No.2023YFC3707901)Futian District Integrated Ground Collapse Monitoring and Early Warning System Construction Project(No.FTCG2023000209).
文摘The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.
文摘在城市中应用微动H/V谱比方法面对大量且复杂的人文噪声干扰,需要对噪声强度较大的微动数据进行去噪处理或信号分析。本文针对现有方法难以处理干扰较大的微动数据以及信号提取过程繁琐的问题,提出基于XGBoost(extreme gradient boosting)的多重加权谱比降噪方法。首先对采集的微动数据进行幅值和频率分析,建立幅值加权谱比、频率加权谱比和多重加权谱比;然后根据建立的多重加权谱比,通过XGBoost方法获得降噪后的谱比曲线。将本文方法与传统STA/LTA(short time average/long time average)方法进行实际高噪声数据对比分析,结果表明相比于STA/LTA方法,本文方法对高噪声数据提取效果更好。
基金This research work is supported by the Projects of National Science Foundation of China (Grant No, 40574052 and 40437018) and National Basic Research Program of China (973 Program) (Grant No. 2007CB209603).Acknowledgements We wish to thank Researcher Xu Tao for his advice and comment. We also thank Mrs. Wang Kun for her help in the process of translation.
文摘In view of the relative positioning problem between non-regular quadrilateral grids and regular rectangle grid nodes in the wave front construction method, concrete realization problems with four grid positioning methods (vector cross product judgment, angle sum, intersection-point, and signs comparison algorithms) in wave front construction which are commonly used in computer graphics are compared and analyzed in this paper. Based on the stability analysis of the location method, the calculation examples show that the vector cross product judgment method is faster and more accurate than other methods in the realization of the relative positioning between non-regular quadrilateral grids and regular rectangle grid nodes in wave front construction. It provides precise grid point attribute values for the next steps of migration and demigration.