In the setting of Fock-Sobolev spaces of positive orders over the complex plane,Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial,then...In the setting of Fock-Sobolev spaces of positive orders over the complex plane,Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial,then the other must also be radial.In this paper,we extend this result to the Fock-Sobolev space of negative order using the Fock-type space with a confluent hyper geometric function.展开更多
基金supported by NRF of Korea(Grant No.NRF-2020R1F1A1A01048601)supported by NRF of Korea(Grant No.NRF-2020R1I1A1A01074837)。
文摘In the setting of Fock-Sobolev spaces of positive orders over the complex plane,Choe and Yang showed that if the one of the symbols of two commuting Toeplitz operators with bounded symbols is non-trivially radial,then the other must also be radial.In this paper,we extend this result to the Fock-Sobolev space of negative order using the Fock-type space with a confluent hyper geometric function.