A high-purity Ti-48Al-2Nb-2Cr alloy powder with an oxygen content as low as 0.0572 wt.%and a particle size of<150μm was produced from a mixture of TiO_(2),Al_(2)O_(3),Nb_(2)O_(5),and Cr_(2)O_(3)powders through red...A high-purity Ti-48Al-2Nb-2Cr alloy powder with an oxygen content as low as 0.0572 wt.%and a particle size of<150μm was produced from a mixture of TiO_(2),Al_(2)O_(3),Nb_(2)O_(5),and Cr_(2)O_(3)powders through reduction with magnesium and deoxidation with calcium.The phase and composition of the products were analyzed.The final product mainly includedγ-TiAl and minorα_(2)-Ti_(3)Al phases,and Ti,Al,Cr,and Nb were homogenously distributed in the powder with a mole ratio of 49.73:43.51:2.05:1.98.The reduction and deoxidation mechanisms were investigated by thermodynamic modeling using the HSC Chemistry software and Pandat software based on the Ti alloy database.展开更多
A direct production method of high-strength titanium alloy from upgraded titania slag(UGS)was developed.First,UGS was reduced into alloy powder with 1.3 wt.%oxygen using magnesium powder.Subsequently,the alloy powder ...A direct production method of high-strength titanium alloy from upgraded titania slag(UGS)was developed.First,UGS was reduced into alloy powder with 1.3 wt.%oxygen using magnesium powder.Subsequently,the alloy powder was compacted at 600 MPa to produce a pellet.Lastly,the pellet was sintered to produce titanium alloy.The reduced powder was characterized,and the effect arising from the sintering temperature on the sintered density,compressive strength,microstructure,and hardness of the alloys was studied.The results showed that the density tended to increase with the temperature increasing from 900 to 1200℃,whereas the porosity decreased.A significant sintering densification was achieved at the temperature above 1100℃(98.65%at 1100℃ and 99.41%at 1200℃).At 1100℃,the hardness and compressive strength reached the maximal values of the alloy,HV 655.7 and 1563 MPa,respectively.展开更多
Background: Secondary preventive therapies play a key role in the prevention of adverse outcomes after coronary artery bypass grafting (CABG). However, medication adherence alter CABG is often poor, and conventiona...Background: Secondary preventive therapies play a key role in the prevention of adverse outcomes after coronary artery bypass grafting (CABG). However, medication adherence alter CABG is often poor, and conventional interventions for improving adherence have limited success. With increasing penetration of smartphones, health-related smartphone applications might provide an opportunity to improve adherence. Carefully designed trials are needed to provide reliable evidence for the use of these applications in patients after CABG. Methods: The Measurement and Improvement Studies of Surgical Coronary Revascularization: Medication Adherence (MISSION-2) study is a multicenter randomized controlled trial, aiming to randomize 1000 CABG patients to the intervention or control groups in a 1 : 1 ratio. We developed the multifaceted, patient-centered, smartphone-based Heart Health Application to encourage lnedication adherence in the intervention group through a health self management program initiated dnring hospital admission for CABG. The application integrated daily scheduled reminders to take the discharge medications, cardiac edticational materials, a dynamic dashboard to review cardiovascular risk factors and secondary prevention targets, and weekly questionnaires with interactive feedback. The primary outcome was secondary preventive medication adherence measured by the Chinese version of the 8-item Morisky Medication Adherence Scale at 6 months after randomization. Secondary outcomes included all-cause death, cardiovascular rehospitalization, and a composite of death, myocardial infarction, stroke, and repeat revascularization.Discussion: Findings will not only provide evidence regarding the feasibility and effectiveness of the described intervention for improving adherence to CABG secondary preventive therapies but also explore a model tor outpatient health self-managenlent that could be translated to various chronic diseases and widely disseminated across resource-limited settings.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52004342)Innovation-driven Project of Central South University,China(No.502501015)the Natural Science Fund for Distinguished Young Scholar of Hunan Province,China(No.2019JJ20031)。
文摘A high-purity Ti-48Al-2Nb-2Cr alloy powder with an oxygen content as low as 0.0572 wt.%and a particle size of<150μm was produced from a mixture of TiO_(2),Al_(2)O_(3),Nb_(2)O_(5),and Cr_(2)O_(3)powders through reduction with magnesium and deoxidation with calcium.The phase and composition of the products were analyzed.The final product mainly includedγ-TiAl and minorα_(2)-Ti_(3)Al phases,and Ti,Al,Cr,and Nb were homogenously distributed in the powder with a mole ratio of 49.73:43.51:2.05:1.98.The reduction and deoxidation mechanisms were investigated by thermodynamic modeling using the HSC Chemistry software and Pandat software based on the Ti alloy database.
基金the National Natural Science Foundation of China(No.52004342)the Innovation-Driven Project of Central South University,China(No.150240015)the Natural Science Fund for Outstanding Young Scholar of Hunan Province,China(No.2021JJ20065).
文摘A direct production method of high-strength titanium alloy from upgraded titania slag(UGS)was developed.First,UGS was reduced into alloy powder with 1.3 wt.%oxygen using magnesium powder.Subsequently,the alloy powder was compacted at 600 MPa to produce a pellet.Lastly,the pellet was sintered to produce titanium alloy.The reduced powder was characterized,and the effect arising from the sintering temperature on the sintered density,compressive strength,microstructure,and hardness of the alloys was studied.The results showed that the density tended to increase with the temperature increasing from 900 to 1200℃,whereas the porosity decreased.A significant sintering densification was achieved at the temperature above 1100℃(98.65%at 1100℃ and 99.41%at 1200℃).At 1100℃,the hardness and compressive strength reached the maximal values of the alloy,HV 655.7 and 1563 MPa,respectively.
文摘Background: Secondary preventive therapies play a key role in the prevention of adverse outcomes after coronary artery bypass grafting (CABG). However, medication adherence alter CABG is often poor, and conventional interventions for improving adherence have limited success. With increasing penetration of smartphones, health-related smartphone applications might provide an opportunity to improve adherence. Carefully designed trials are needed to provide reliable evidence for the use of these applications in patients after CABG. Methods: The Measurement and Improvement Studies of Surgical Coronary Revascularization: Medication Adherence (MISSION-2) study is a multicenter randomized controlled trial, aiming to randomize 1000 CABG patients to the intervention or control groups in a 1 : 1 ratio. We developed the multifaceted, patient-centered, smartphone-based Heart Health Application to encourage lnedication adherence in the intervention group through a health self management program initiated dnring hospital admission for CABG. The application integrated daily scheduled reminders to take the discharge medications, cardiac edticational materials, a dynamic dashboard to review cardiovascular risk factors and secondary prevention targets, and weekly questionnaires with interactive feedback. The primary outcome was secondary preventive medication adherence measured by the Chinese version of the 8-item Morisky Medication Adherence Scale at 6 months after randomization. Secondary outcomes included all-cause death, cardiovascular rehospitalization, and a composite of death, myocardial infarction, stroke, and repeat revascularization.Discussion: Findings will not only provide evidence regarding the feasibility and effectiveness of the described intervention for improving adherence to CABG secondary preventive therapies but also explore a model tor outpatient health self-managenlent that could be translated to various chronic diseases and widely disseminated across resource-limited settings.