With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous conn...With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous connectivity and foster agile communications.The difficulty stems from features other than mobile ad-hoc network(MANET),namely aerial mobility in three-dimensional space and often changing topology.In the UAV network,a single node serves as a forwarding,transmitting,and receiving node at the same time.Typically,the communication path is multi-hop,and routing significantly affects the network’s performance.A lot of effort should be invested in performance analysis for selecting the optimum routing system.With this motivation,this study modelled a new Coati Optimization Algorithm-based Energy-Efficient Routing Process for Unmanned Aerial Vehicle Communication(COAER-UAVC)technique.The presented COAER-UAVC technique establishes effective routes for communication between the UAVs.It is primarily based on the coati characteristics in nature:if attacking and hunting iguanas and escaping from predators.Besides,the presented COAER-UAVC technique concentrates on the design of fitness functions to minimize energy utilization and communication delay.A varied group of simulations was performed to depict the optimum performance of the COAER-UAVC system.The experimental results verified that the COAER-UAVC technique had assured improved performance over other approaches.展开更多
In recent times,cities are getting smart and can be managed effectively through diverse architectures and services.Smart cities have the ability to support smart medical systems that can infiltrate distinct events(i.e...In recent times,cities are getting smart and can be managed effectively through diverse architectures and services.Smart cities have the ability to support smart medical systems that can infiltrate distinct events(i.e.,smart hospitals,smart homes,and community health centres)and scenarios(e.g.,rehabilitation,abnormal behavior monitoring,clinical decision-making,disease prevention and diagnosis postmarking surveillance and prescription recommendation).The integration of Artificial Intelligence(AI)with recent technologies,for instance medical screening gadgets,are significant enough to deliver maximum performance and improved management services to handle chronic diseases.With latest developments in digital data collection,AI techniques can be employed for clinical decision making process.On the other hand,Cardiovascular Disease(CVD)is one of the major illnesses that increase the mortality rate across the globe.Generally,wearables can be employed in healthcare systems that instigate the development of CVD detection and classification.With this motivation,the current study develops an Artificial Intelligence Enabled Decision Support System for CVD Disease Detection and Classification in e-healthcare environment,abbreviated as AIDSS-CDDC technique.The proposed AIDSS-CDDC model enables the Internet of Things(IoT)devices for healthcare data collection.Then,the collected data is saved in cloud server for examination.Followed by,training 4484 CMC,2023,vol.74,no.2 and testing processes are executed to determine the patient’s health condition.To accomplish this,the presented AIDSS-CDDC model employs data preprocessing and Improved Sine Cosine Optimization based Feature Selection(ISCO-FS)technique.In addition,Adam optimizer with Autoencoder Gated RecurrentUnit(AE-GRU)model is employed for detection and classification of CVD.The experimental results highlight that the proposed AIDSS-CDDC model is a promising performer compared to other existing models.展开更多
Autism Spectrum Disorder (ASD) refers to a neuro-disorder wherean individual has long-lasting effects on communication and interaction withothers.Advanced information technologywhich employs artificial intelligence(AI...Autism Spectrum Disorder (ASD) refers to a neuro-disorder wherean individual has long-lasting effects on communication and interaction withothers.Advanced information technologywhich employs artificial intelligence(AI) model has assisted in early identify ASD by using pattern detection.Recent advances of AI models assist in the automated identification andclassification of ASD, which helps to reduce the severity of the disease.This study introduces an automated ASD classification using owl searchalgorithm with machine learning (ASDC-OSAML) model. The proposedASDC-OSAML model majorly focuses on the identification and classificationof ASD. To attain this, the presentedASDC-OSAML model follows minmaxnormalization approach as a pre-processing stage. Next, the owl searchalgorithm (OSA)-based feature selection (OSA-FS) model is used to derivefeature subsets. Then, beetle swarm antenna search (BSAS) algorithm withIterative Dichotomiser 3 (ID3) classification method was implied for ASDdetection and classification. The design of BSAS algorithm helps to determinethe parameter values of the ID3 classifier. The performance analysis of theASDC-OSAML model is performed using benchmark dataset. An extensivecomparison study highlighted the supremacy of the ASDC-OSAML modelover recent state of art approaches.展开更多
Recently,urbanization becomes a major concern for developing as well as developed countries.Owing to the increased urbanization,one of the important challenging issues in smart cities is waste management.So,automated ...Recently,urbanization becomes a major concern for developing as well as developed countries.Owing to the increased urbanization,one of the important challenging issues in smart cities is waste management.So,automated waste detection and classification model becomes necessary for the smart city and to accomplish better recyclable waste management.Effective recycling of waste offers the chance of reducing the quantity of waste disposed to the land fill by minimizing the requirement of collecting raw materials.This study develops a novel Deep Consensus Network with Whale Optimization Algorithm for Recycling Waste Object Detection(DCNWORWOD)in Smart Cities.The goal of the DCNWO-RWOD technique intends to properly identify and classify the objects into recyclable and non-recyclable ones.The proposed DCNWO-RWOD technique involves the design of deep consensus network(DCN)to detect waste objects in the input image.For improving the overall object detection performance of the DCN model,the whale optimization algorithm(WOA)is exploited.Finally,Na飗e Bayes(NB)classifier is used for the classification of detected waste objects into recyclable and non-recyclable ones.The performance validation of theDCNWO-RWOD technique takes place using the open access dataset.The extensive comparative study reported the enhanced performance of the DCNWO-RWOD technique interms of several measures.展开更多
Presently,smart cities play a vital role to enhance the quality of living among human beings in several ways such as online shopping,e-learning,ehealthcare,etc.Despite the benefits of advanced technologies,issues are ...Presently,smart cities play a vital role to enhance the quality of living among human beings in several ways such as online shopping,e-learning,ehealthcare,etc.Despite the benefits of advanced technologies,issues are also existed from the transformation of the physical word into digital word,particularly in online social networks(OSN).Cyberbullying(CB)is a major problem in OSN which needs to be addressed by the use of automated natural language processing(NLP)and machine learning(ML)approaches.This article devises a novel search and rescue optimization with machine learning enabled cybersecurity model for online social networks,named SRO-MLCOSN model.The presented SRO-MLCOSN model focuses on the identification of CB that occurred in social networking sites.The SRO-MLCOSN model initially employs Glove technique for word embedding process.Besides,a multiclass-weighted kernel extreme learning machine(M-WKELM)model is utilized for effectual identification and categorization of CB.Finally,Search and Rescue Optimization(SRO)algorithm is exploited to fine tune the parameters involved in the M-WKELM model.The experimental validation of the SRO-MLCOSN model on the benchmark dataset reported significant outcomes over the other approaches with precision,recall,and F1-score of 96.24%,98.71%,and 97.46%respectively.展开更多
The Internet of Things(IoT)environment plays a crucial role in the design of smart environments.Security and privacy are the major challenging problems that exist in the design of IoT-enabled real-time environments.Se...The Internet of Things(IoT)environment plays a crucial role in the design of smart environments.Security and privacy are the major challenging problems that exist in the design of IoT-enabled real-time environments.Security susceptibilities in IoT-based systems pose security threats which affect smart environment applications.Intrusion detection systems(IDS)can be used for IoT environments to mitigate IoT-related security attacks which use few security vulnerabilities.This paper introduces a modified garden balsan optimizationbased machine learning model for intrusion detection(MGBO-MLID)in the IoT cloud environment.The presented MGBO-MLID technique focuses on the identification and classification of intrusions in the IoT cloud atmosphere.Initially,the presented MGBO-MLID model applies min-max normalization that can be utilized for scaling the features in a uniform format.In addition,the MGBO-MLID model exploits the MGBO algorithm to choose the optimal subset of features.Moreover,the attention-based bidirectional long short-term(ABiLSTM)method can be utilized for the detection and classification of intrusions.At the final level,the Aquila optimization(AO)algorithm is applied as a hyperparameter optimizer to fine-tune the ABiLSTM methods.The experimental validation of the MGBO-MLID method is tested using a benchmark dataset.The extensive comparative study reported the betterment of the MGBO-MLID algorithm over recent approaches.展开更多
Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stag...Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stage is very crucial.Therefore,in this paper,we are proposing a deep learning model for computerized detection of Encephalitis from the electroencephalogram data(EEG).Also,we propose a Density-Based Clustering model to classify the distinctive waves of Encephalitis.Customary clustering models usually employ a computed single centroid virtual point to define the cluster configuration,but this single point does not contain adequate information.To precisely extract accurate inner structural data,a multiple centroids approach is employed and defined in this paper,which defines the cluster configuration by allocating weights to each state in the cluster.The multiple EEG view fuzzy learning approach incorporates data from every sin-gle view to enhance the model's clustering performance.Also a fuzzy Density-Based Clustering model with multiple centroids(FDBC)is presented.This model employs multiple real state centroids to define clusters using Partitioning Around Centroids algorithm.The Experimental results validate the medical importance of the proposed clustering model.展开更多
Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI ...Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI is receiving a large amount of attention.Also,MRI tumor detection is usually followed by a biopsy(an invasive procedure),which is a medical procedure for brain tumor classification.It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures.Convolutional neural network(CNN)is deemed to be one of the best machine learning algorithms to achieve high-accuracy results in tumor identification and classification.In this paper,a CNN-based technique for brain tumor classification has been developed.The proposed CNN can distinguish between normal(no-cancer),astrocytoma tumors,gliomatosis cerebri tumors,and glioblastoma tumors.The implemented CNN was tested on MRI images that underwent a motion-correction procedure.The CNN was evaluated using two performance measurement procedures.The first one is a k-fold cross-validation testing method,in which we tested the dataset using k=8,10,12,and 14.The best accuracy for this procedure was 96.26%when k=10.To overcome the over-fitting problem that could be occurred in the k-fold testing method,we used a hold-out testing method as a second evaluation procedure.The results of this procedure succeeded in attaining 97.8%accuracy,with a specificity of 99.2%and a sensitivity of 97.32%.With this high accuracy,the developed CNN architecture could be considered an effective automated diagnosis method for the classification of brain tumors from MRI images.展开更多
Early detection of lung cancer can help for improving the survival rate of the patients.Biomedical imaging tools such as computed tomography(CT)image was utilized to the proper identification and positioning of lung c...Early detection of lung cancer can help for improving the survival rate of the patients.Biomedical imaging tools such as computed tomography(CT)image was utilized to the proper identification and positioning of lung cancer.The recently developed deep learning(DL)models can be employed for the effectual identification and classification of diseases.This article introduces novel deep learning enabled CAD technique for lung cancer using biomedical CT image,named DLCADLC-BCT technique.The proposed DLCADLC-BCT technique intends for detecting and classifying lung cancer using CT images.The proposed DLCADLC-BCT technique initially uses gray level co-occurrence matrix(GLCM)model for feature extraction.Also,long short term memory(LSTM)model was applied for classifying the existence of lung cancer in the CT images.Moreover,moth swarm optimization(MSO)algorithm is employed to optimally choose the hyperparameters of the LSTM model such as learning rate,batch size,and epoch count.For demonstrating the improved classifier results of the DLCADLC-BCT approach,a set of simulations were executed on benchmark dataset and the outcomes exhibited the supremacy of the DLCADLC-BCT technique over the recent approaches.展开更多
Artificial intelligence(AI)techniques have received significant attention among research communities in the field of networking,image processing,natural language processing,robotics,etc.At the same time,a major proble...Artificial intelligence(AI)techniques have received significant attention among research communities in the field of networking,image processing,natural language processing,robotics,etc.At the same time,a major problem in wireless sensor networks(WSN)is node localization,which aims to identify the exact position of the sensor nodes(SN)using the known position of several anchor nodes.WSN comprises a massive number of SNs and records the position of the nodes,which becomes a tedious process.Besides,the SNs might be subjected to node mobility and the position alters with time.So,a precise node localization(NL)manner is required for determining the location of the SNs.In this view,this paper presents a new quantum bird migration optimizer-based NL(QBMA-NL)technique for WSN.The goal of the QBMA-NL approach is for determining the position of unknown nodes in the network by the use of anchor nodes.The QBMA-NL technique is mainly based on the mating behavior of bird species at the time of mating season.In addition,an objective function is derived based on the received signal strength indicator(RSSI)and Euclidean distance from the known to unknown SNs.For demonstrating the improved performance of the QBMA-NL technique,a wide range of simulations take place and the results reported the supreme performance over the recent NL techniques.展开更多
:Strabismus is a medical condition that is defined as the lack of coordination between the eyes.When Strabismus is detected at an early age,the chances of curing it are higher.The methods used to detect strabismus and...:Strabismus is a medical condition that is defined as the lack of coordination between the eyes.When Strabismus is detected at an early age,the chances of curing it are higher.The methods used to detect strabismus and measure its degree of deviation are complex and time-consuming,and they always require the presence of a physician.In this paper,we present a method of detecting strabismus and measuring its degree of deviation using videos of the patient’s eye region under a cover test.Our method involves extracting features from a set of training videos(training corpora)and using them to build a classifier.A decision tree(ID3)is built using labeled cases from actual strabismus diagnosis.Patterns are extracted from the corresponding videos of patients,and an association between the extracted features and actual diagnoses is established.Matching Rules from the correlation plot are used to predict diagnoses for future patients.The classifier was tested using a set of testing videos(testing corpora).The results showed 95.9%accuracy,4.1%were light cases and could not be detected correctly from the videos,half of them were false positive and the other half was false negative.展开更多
Feelings influence human beings’decision-making;therefore,incorporation of feeling factors in decision-making is very important.Regret and rejoice are very important emotional feelings that can have a great impact on...Feelings influence human beings’decision-making;therefore,incorporation of feeling factors in decision-making is very important.Regret and rejoice are very important emotional feelings that can have a great impact on decision-making if they are considered together.While regret has received most of the attention in related research,rejoice has been less considered even though it can greatly influence people’s preferences in decision-making.Furthermore,systematically incorporating regret and rejoice in the multicriteria decision-making(MCDM)modeling frameworks for decision-making has received little research attention.In this paper,we introduce a new multiattribute selection procedure that incorporates both regret and rejoice to select the best choice.We utilize the positional advantage operator concept to develop regret and rejoice mathematical equations,and prove them.The proposed MCDM procedure that incorporates these two emotional factors offers a decision-maker the flexibility to trade off some benefits in order to gain a state of psychological satisfaction.More specifically,regret and rejoice are presentedmathematically to enable the decision-maker to determine the values of regret and rejoice,and then make the decision in which the rejoice value is higher than the regret value.To test the performance of this new procedure,we apply it to three numerical examples proposed in previous works.The results are matched with those obtained by other methods such as the regret model,VIKOR,PROMETHEE I,and PROMETHEE II,thereby proving the efficacy of the new procedure.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(235/44)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R114)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR71)This study is supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous connectivity and foster agile communications.The difficulty stems from features other than mobile ad-hoc network(MANET),namely aerial mobility in three-dimensional space and often changing topology.In the UAV network,a single node serves as a forwarding,transmitting,and receiving node at the same time.Typically,the communication path is multi-hop,and routing significantly affects the network’s performance.A lot of effort should be invested in performance analysis for selecting the optimum routing system.With this motivation,this study modelled a new Coati Optimization Algorithm-based Energy-Efficient Routing Process for Unmanned Aerial Vehicle Communication(COAER-UAVC)technique.The presented COAER-UAVC technique establishes effective routes for communication between the UAVs.It is primarily based on the coati characteristics in nature:if attacking and hunting iguanas and escaping from predators.Besides,the presented COAER-UAVC technique concentrates on the design of fitness functions to minimize energy utilization and communication delay.A varied group of simulations was performed to depict the optimum performance of the COAER-UAVC system.The experimental results verified that the COAER-UAVC technique had assured improved performance over other approaches.
基金the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number(71/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R114)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR26).
文摘In recent times,cities are getting smart and can be managed effectively through diverse architectures and services.Smart cities have the ability to support smart medical systems that can infiltrate distinct events(i.e.,smart hospitals,smart homes,and community health centres)and scenarios(e.g.,rehabilitation,abnormal behavior monitoring,clinical decision-making,disease prevention and diagnosis postmarking surveillance and prescription recommendation).The integration of Artificial Intelligence(AI)with recent technologies,for instance medical screening gadgets,are significant enough to deliver maximum performance and improved management services to handle chronic diseases.With latest developments in digital data collection,AI techniques can be employed for clinical decision making process.On the other hand,Cardiovascular Disease(CVD)is one of the major illnesses that increase the mortality rate across the globe.Generally,wearables can be employed in healthcare systems that instigate the development of CVD detection and classification.With this motivation,the current study develops an Artificial Intelligence Enabled Decision Support System for CVD Disease Detection and Classification in e-healthcare environment,abbreviated as AIDSS-CDDC technique.The proposed AIDSS-CDDC model enables the Internet of Things(IoT)devices for healthcare data collection.Then,the collected data is saved in cloud server for examination.Followed by,training 4484 CMC,2023,vol.74,no.2 and testing processes are executed to determine the patient’s health condition.To accomplish this,the presented AIDSS-CDDC model employs data preprocessing and Improved Sine Cosine Optimization based Feature Selection(ISCO-FS)technique.In addition,Adam optimizer with Autoencoder Gated RecurrentUnit(AE-GRU)model is employed for detection and classification of CVD.The experimental results highlight that the proposed AIDSS-CDDC model is a promising performer compared to other existing models.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project Under Grant Number(61/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R114)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR26).
文摘Autism Spectrum Disorder (ASD) refers to a neuro-disorder wherean individual has long-lasting effects on communication and interaction withothers.Advanced information technologywhich employs artificial intelligence(AI) model has assisted in early identify ASD by using pattern detection.Recent advances of AI models assist in the automated identification andclassification of ASD, which helps to reduce the severity of the disease.This study introduces an automated ASD classification using owl searchalgorithm with machine learning (ASDC-OSAML) model. The proposedASDC-OSAML model majorly focuses on the identification and classificationof ASD. To attain this, the presentedASDC-OSAML model follows minmaxnormalization approach as a pre-processing stage. Next, the owl searchalgorithm (OSA)-based feature selection (OSA-FS) model is used to derivefeature subsets. Then, beetle swarm antenna search (BSAS) algorithm withIterative Dichotomiser 3 (ID3) classification method was implied for ASDdetection and classification. The design of BSAS algorithm helps to determinethe parameter values of the ID3 classifier. The performance analysis of theASDC-OSAML model is performed using benchmark dataset. An extensivecomparison study highlighted the supremacy of the ASDC-OSAML modelover recent state of art approaches.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP2/42/43)Princess Nourah bint Abdulrahman UniversityResearchers Supporting Project number(PNURSP2022R114)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Recently,urbanization becomes a major concern for developing as well as developed countries.Owing to the increased urbanization,one of the important challenging issues in smart cities is waste management.So,automated waste detection and classification model becomes necessary for the smart city and to accomplish better recyclable waste management.Effective recycling of waste offers the chance of reducing the quantity of waste disposed to the land fill by minimizing the requirement of collecting raw materials.This study develops a novel Deep Consensus Network with Whale Optimization Algorithm for Recycling Waste Object Detection(DCNWORWOD)in Smart Cities.The goal of the DCNWO-RWOD technique intends to properly identify and classify the objects into recyclable and non-recyclable ones.The proposed DCNWO-RWOD technique involves the design of deep consensus network(DCN)to detect waste objects in the input image.For improving the overall object detection performance of the DCN model,the whale optimization algorithm(WOA)is exploited.Finally,Na飗e Bayes(NB)classifier is used for the classification of detected waste objects into recyclable and non-recyclable ones.The performance validation of theDCNWO-RWOD technique takes place using the open access dataset.The extensive comparative study reported the enhanced performance of the DCNWO-RWOD technique interms of several measures.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/158/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R114),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Presently,smart cities play a vital role to enhance the quality of living among human beings in several ways such as online shopping,e-learning,ehealthcare,etc.Despite the benefits of advanced technologies,issues are also existed from the transformation of the physical word into digital word,particularly in online social networks(OSN).Cyberbullying(CB)is a major problem in OSN which needs to be addressed by the use of automated natural language processing(NLP)and machine learning(ML)approaches.This article devises a novel search and rescue optimization with machine learning enabled cybersecurity model for online social networks,named SRO-MLCOSN model.The presented SRO-MLCOSN model focuses on the identification of CB that occurred in social networking sites.The SRO-MLCOSN model initially employs Glove technique for word embedding process.Besides,a multiclass-weighted kernel extreme learning machine(M-WKELM)model is utilized for effectual identification and categorization of CB.Finally,Search and Rescue Optimization(SRO)algorithm is exploited to fine tune the parameters involved in the M-WKELM model.The experimental validation of the SRO-MLCOSN model on the benchmark dataset reported significant outcomes over the other approaches with precision,recall,and F1-score of 96.24%,98.71%,and 97.46%respectively.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R114)Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR48.
文摘The Internet of Things(IoT)environment plays a crucial role in the design of smart environments.Security and privacy are the major challenging problems that exist in the design of IoT-enabled real-time environments.Security susceptibilities in IoT-based systems pose security threats which affect smart environment applications.Intrusion detection systems(IDS)can be used for IoT environments to mitigate IoT-related security attacks which use few security vulnerabilities.This paper introduces a modified garden balsan optimizationbased machine learning model for intrusion detection(MGBO-MLID)in the IoT cloud environment.The presented MGBO-MLID technique focuses on the identification and classification of intrusions in the IoT cloud atmosphere.Initially,the presented MGBO-MLID model applies min-max normalization that can be utilized for scaling the features in a uniform format.In addition,the MGBO-MLID model exploits the MGBO algorithm to choose the optimal subset of features.Moreover,the attention-based bidirectional long short-term(ABiLSTM)method can be utilized for the detection and classification of intrusions.At the final level,the Aquila optimization(AO)algorithm is applied as a hyperparameter optimizer to fine-tune the ABiLSTM methods.The experimental validation of the MGBO-MLID method is tested using a benchmark dataset.The extensive comparative study reported the betterment of the MGBO-MLID algorithm over recent approaches.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R113)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stage is very crucial.Therefore,in this paper,we are proposing a deep learning model for computerized detection of Encephalitis from the electroencephalogram data(EEG).Also,we propose a Density-Based Clustering model to classify the distinctive waves of Encephalitis.Customary clustering models usually employ a computed single centroid virtual point to define the cluster configuration,but this single point does not contain adequate information.To precisely extract accurate inner structural data,a multiple centroids approach is employed and defined in this paper,which defines the cluster configuration by allocating weights to each state in the cluster.The multiple EEG view fuzzy learning approach incorporates data from every sin-gle view to enhance the model's clustering performance.Also a fuzzy Density-Based Clustering model with multiple centroids(FDBC)is presented.This model employs multiple real state centroids to define clusters using Partitioning Around Centroids algorithm.The Experimental results validate the medical importance of the proposed clustering model.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project Number PNU-DRI-RI-20-029.
文摘Detection of brain tumors in MRI images is the first step in brain cancer diagnosis.The accuracy of the diagnosis depends highly on the expertise of radiologists.Therefore,automated diagnosis of brain cancer from MRI is receiving a large amount of attention.Also,MRI tumor detection is usually followed by a biopsy(an invasive procedure),which is a medical procedure for brain tumor classification.It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures.Convolutional neural network(CNN)is deemed to be one of the best machine learning algorithms to achieve high-accuracy results in tumor identification and classification.In this paper,a CNN-based technique for brain tumor classification has been developed.The proposed CNN can distinguish between normal(no-cancer),astrocytoma tumors,gliomatosis cerebri tumors,and glioblastoma tumors.The implemented CNN was tested on MRI images that underwent a motion-correction procedure.The CNN was evaluated using two performance measurement procedures.The first one is a k-fold cross-validation testing method,in which we tested the dataset using k=8,10,12,and 14.The best accuracy for this procedure was 96.26%when k=10.To overcome the over-fitting problem that could be occurred in the k-fold testing method,we used a hold-out testing method as a second evaluation procedure.The results of this procedure succeeded in attaining 97.8%accuracy,with a specificity of 99.2%and a sensitivity of 97.32%.With this high accuracy,the developed CNN architecture could be considered an effective automated diagnosis method for the classification of brain tumors from MRI images.
基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR03).
文摘Early detection of lung cancer can help for improving the survival rate of the patients.Biomedical imaging tools such as computed tomography(CT)image was utilized to the proper identification and positioning of lung cancer.The recently developed deep learning(DL)models can be employed for the effectual identification and classification of diseases.This article introduces novel deep learning enabled CAD technique for lung cancer using biomedical CT image,named DLCADLC-BCT technique.The proposed DLCADLC-BCT technique intends for detecting and classifying lung cancer using CT images.The proposed DLCADLC-BCT technique initially uses gray level co-occurrence matrix(GLCM)model for feature extraction.Also,long short term memory(LSTM)model was applied for classifying the existence of lung cancer in the CT images.Moreover,moth swarm optimization(MSO)algorithm is employed to optimally choose the hyperparameters of the LSTM model such as learning rate,batch size,and epoch count.For demonstrating the improved classifier results of the DLCADLC-BCT approach,a set of simulations were executed on benchmark dataset and the outcomes exhibited the supremacy of the DLCADLC-BCT technique over the recent approaches.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 1/279/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R114)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Artificial intelligence(AI)techniques have received significant attention among research communities in the field of networking,image processing,natural language processing,robotics,etc.At the same time,a major problem in wireless sensor networks(WSN)is node localization,which aims to identify the exact position of the sensor nodes(SN)using the known position of several anchor nodes.WSN comprises a massive number of SNs and records the position of the nodes,which becomes a tedious process.Besides,the SNs might be subjected to node mobility and the position alters with time.So,a precise node localization(NL)manner is required for determining the location of the SNs.In this view,this paper presents a new quantum bird migration optimizer-based NL(QBMA-NL)technique for WSN.The goal of the QBMA-NL approach is for determining the position of unknown nodes in the network by the use of anchor nodes.The QBMA-NL technique is mainly based on the mating behavior of bird species at the time of mating season.In addition,an objective function is derived based on the received signal strength indicator(RSSI)and Euclidean distance from the known to unknown SNs.For demonstrating the improved performance of the QBMA-NL technique,a wide range of simulations take place and the results reported the supreme performance over the recent NL techniques.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Funding Program(Grand No.FRP-1440-32).
文摘:Strabismus is a medical condition that is defined as the lack of coordination between the eyes.When Strabismus is detected at an early age,the chances of curing it are higher.The methods used to detect strabismus and measure its degree of deviation are complex and time-consuming,and they always require the presence of a physician.In this paper,we present a method of detecting strabismus and measuring its degree of deviation using videos of the patient’s eye region under a cover test.Our method involves extracting features from a set of training videos(training corpora)and using them to build a classifier.A decision tree(ID3)is built using labeled cases from actual strabismus diagnosis.Patterns are extracted from the corresponding videos of patients,and an association between the extracted features and actual diagnoses is established.Matching Rules from the correlation plot are used to predict diagnoses for future patients.The classifier was tested using a set of testing videos(testing corpora).The results showed 95.9%accuracy,4.1%were light cases and could not be detected correctly from the videos,half of them were false positive and the other half was false negative.
基金This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Funding Program(Grant No.FRP-1440-31).
文摘Feelings influence human beings’decision-making;therefore,incorporation of feeling factors in decision-making is very important.Regret and rejoice are very important emotional feelings that can have a great impact on decision-making if they are considered together.While regret has received most of the attention in related research,rejoice has been less considered even though it can greatly influence people’s preferences in decision-making.Furthermore,systematically incorporating regret and rejoice in the multicriteria decision-making(MCDM)modeling frameworks for decision-making has received little research attention.In this paper,we introduce a new multiattribute selection procedure that incorporates both regret and rejoice to select the best choice.We utilize the positional advantage operator concept to develop regret and rejoice mathematical equations,and prove them.The proposed MCDM procedure that incorporates these two emotional factors offers a decision-maker the flexibility to trade off some benefits in order to gain a state of psychological satisfaction.More specifically,regret and rejoice are presentedmathematically to enable the decision-maker to determine the values of regret and rejoice,and then make the decision in which the rejoice value is higher than the regret value.To test the performance of this new procedure,we apply it to three numerical examples proposed in previous works.The results are matched with those obtained by other methods such as the regret model,VIKOR,PROMETHEE I,and PROMETHEE II,thereby proving the efficacy of the new procedure.