Highly compact lasers with ultra-low threshold and single-mode continuous wave(CW)operation have been a long sought-after component for photonic integrated circuits(PICs).Photonic bound states in the continuum(BICs),d...Highly compact lasers with ultra-low threshold and single-mode continuous wave(CW)operation have been a long sought-after component for photonic integrated circuits(PICs).Photonic bound states in the continuum(BICs),due to their excellent ability of trapping light and enhancing light-matter interaction,have been investigated in lasing configurations combining various BIC cavities and optical gain materials.However,the realization of BIC laser with a highly compact size and an ultra-low CW threshold has remained elusive.We demonstrate room temperature CW BIC lasers in the 1310 nm O-band wavelength range,by fabricating a miniaturized BIC cavity in an InAs/GaAs epitaxial quantum dot(QD)gain membrane.By enabling effective trapping of both light and carriers in all three dimensions,ultra-low threshold of 12μW(0.052 kW cm^(-2))is achieved at room temperature.Single-mode lasing is also realized in cavities as small as only 5×5 unit cells(~2.5×2.5μm^(2) cavity size)with a mode volume of 1.16(λ/n)^(3).The maximum operation temperature reaches 70℃ with a characteristic temperature of T_(0)~93.9 K.With its advantages in terms of a small footprint,ultra-low power consumption,and adaptability for integration,the mini-BIC lasers offer a perspective light source for future PICs aimed at high-capacity optical communications,sensing and quantum information.展开更多
The combination of grating-based frequency-selective optical feedback mechanisms,such as distributed feedback(DFB)or distributed Bragg reflector(DBR)structures,with quantum dot(QD)gain materials is a main approach tow...The combination of grating-based frequency-selective optical feedback mechanisms,such as distributed feedback(DFB)or distributed Bragg reflector(DBR)structures,with quantum dot(QD)gain materials is a main approach towards ultrahigh-performance semiconductor lasers for many key novel applications,as either stand-alone sources or on-chip sources in photonic integrated circuits.However,the fabrication of conventional buried Bragg grating structures on GaAs,GaAs/Si,GaSb,and other material platforms has been met with major material regrowth difficulties.We report a novel and universal approach of introducing laterally coupled dielectric Bragg gratings to semiconductor lasers that allows highly controllable,reliable,and strong coupling between the grating and the optical mode.We implement such a grating structure in a low-loss amorphous silicon material alongside GaAs lasers with InAs/GaAs QD gain layers.The resulting DFB laser arrays emit at pre-designed 0.8 THz local area network wavelength division multiplexing frequency intervals in the 1300 nm band with record performance parameters,including sidemode suppression ratios as high as 52.7 dB,continuous-wave output power of 26.6 mW(room temperature)and 6 mW(at 55℃),and ultralow relative intensity noise(RIN)of<-165 dB/Hz(2.5-20 GHz).The devices are also capable of isolator-free operating under very high external reflection levels of up to-12.3 dB while maintaining high spectral purity and ultralow RIN qualities.These results validate the novel laterally coupled dielectric grating as a technologically superior and potentially cost-effective approach for fabricating DFB and DBR lasers free of their semiconductor material constraints,which are thus universally applicable across different material platforms and wavelength bands.展开更多
基金supported by the National Key R&D Program of China(2018YFB2200201)the Science and Technology Program of Guangzhou(202103030001)+2 种基金the National Natural Science Foundation of China(62135012,12074442)the National Key R&D Program of Guangdong Province(2020B0303020001)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01121).
文摘Highly compact lasers with ultra-low threshold and single-mode continuous wave(CW)operation have been a long sought-after component for photonic integrated circuits(PICs).Photonic bound states in the continuum(BICs),due to their excellent ability of trapping light and enhancing light-matter interaction,have been investigated in lasing configurations combining various BIC cavities and optical gain materials.However,the realization of BIC laser with a highly compact size and an ultra-low CW threshold has remained elusive.We demonstrate room temperature CW BIC lasers in the 1310 nm O-band wavelength range,by fabricating a miniaturized BIC cavity in an InAs/GaAs epitaxial quantum dot(QD)gain membrane.By enabling effective trapping of both light and carriers in all three dimensions,ultra-low threshold of 12μW(0.052 kW cm^(-2))is achieved at room temperature.Single-mode lasing is also realized in cavities as small as only 5×5 unit cells(~2.5×2.5μm^(2) cavity size)with a mode volume of 1.16(λ/n)^(3).The maximum operation temperature reaches 70℃ with a characteristic temperature of T_(0)~93.9 K.With its advantages in terms of a small footprint,ultra-low power consumption,and adaptability for integration,the mini-BIC lasers offer a perspective light source for future PICs aimed at high-capacity optical communications,sensing and quantum information.
基金National Key Research and Development Program of China(2018YFB2200201)Science and Technology Program of Guangzhou(202103030001)+2 种基金National Key R&D Program of Guangdong Province(2020B0303020001)Science Foundation of Guangzhou City for the Pearl River Star(201906010090)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01121).
文摘The combination of grating-based frequency-selective optical feedback mechanisms,such as distributed feedback(DFB)or distributed Bragg reflector(DBR)structures,with quantum dot(QD)gain materials is a main approach towards ultrahigh-performance semiconductor lasers for many key novel applications,as either stand-alone sources or on-chip sources in photonic integrated circuits.However,the fabrication of conventional buried Bragg grating structures on GaAs,GaAs/Si,GaSb,and other material platforms has been met with major material regrowth difficulties.We report a novel and universal approach of introducing laterally coupled dielectric Bragg gratings to semiconductor lasers that allows highly controllable,reliable,and strong coupling between the grating and the optical mode.We implement such a grating structure in a low-loss amorphous silicon material alongside GaAs lasers with InAs/GaAs QD gain layers.The resulting DFB laser arrays emit at pre-designed 0.8 THz local area network wavelength division multiplexing frequency intervals in the 1300 nm band with record performance parameters,including sidemode suppression ratios as high as 52.7 dB,continuous-wave output power of 26.6 mW(room temperature)and 6 mW(at 55℃),and ultralow relative intensity noise(RIN)of<-165 dB/Hz(2.5-20 GHz).The devices are also capable of isolator-free operating under very high external reflection levels of up to-12.3 dB while maintaining high spectral purity and ultralow RIN qualities.These results validate the novel laterally coupled dielectric grating as a technologically superior and potentially cost-effective approach for fabricating DFB and DBR lasers free of their semiconductor material constraints,which are thus universally applicable across different material platforms and wavelength bands.