The endophytic fungi in different tissues of Artemisia annua was isolated and purified to explore their ecological distribution and tissue preference, and the extracellular enzyme activities of dominant endophytic fun...The endophytic fungi in different tissues of Artemisia annua was isolated and purified to explore their ecological distribution and tissue preference, and the extracellular enzyme activities of dominant endophytic fungi were determined to characterize the metabolic function of endophytic fungi. The results showed that a total of 67 endophytic fungi were obtained from Artemisia annua tissues. The number and species of endophytic fungi in different tissues were significantly different. The number, colonization rate (CR) and isolation rate (IR) of endophytic fungi in root were significantly higher than those of stem and leaf. The dominant endophytic fungi, diversity and similarity coefficient of endophytic fungi also showed significant difference among tissues. The extracellular enzyme activities of endophytic fungi in different tissues are significantly different. The enzyme activities of endophytic fungi isolated from root are significantly higher than those isolated from stem and leaf. The research results showed that the endophytic fungi in Artemisia annua had significant tissue preference, and the metabolic function of endophytic fungi showed significant difference among tissues. This will lay a foundation for further research, development and utilization of endophytic fungi, and also provide a theoretical basis for screening functional endophytic fungi in Artemisia annua.展开更多
文摘The endophytic fungi in different tissues of Artemisia annua was isolated and purified to explore their ecological distribution and tissue preference, and the extracellular enzyme activities of dominant endophytic fungi were determined to characterize the metabolic function of endophytic fungi. The results showed that a total of 67 endophytic fungi were obtained from Artemisia annua tissues. The number and species of endophytic fungi in different tissues were significantly different. The number, colonization rate (CR) and isolation rate (IR) of endophytic fungi in root were significantly higher than those of stem and leaf. The dominant endophytic fungi, diversity and similarity coefficient of endophytic fungi also showed significant difference among tissues. The extracellular enzyme activities of endophytic fungi in different tissues are significantly different. The enzyme activities of endophytic fungi isolated from root are significantly higher than those isolated from stem and leaf. The research results showed that the endophytic fungi in Artemisia annua had significant tissue preference, and the metabolic function of endophytic fungi showed significant difference among tissues. This will lay a foundation for further research, development and utilization of endophytic fungi, and also provide a theoretical basis for screening functional endophytic fungi in Artemisia annua.