Accurate watermelon yield estimation is crucial to the agricultural value chain,as it guides the allocation of agricultural resources as well as facilitates inventory and logistics planning.The conventional method of ...Accurate watermelon yield estimation is crucial to the agricultural value chain,as it guides the allocation of agricultural resources as well as facilitates inventory and logistics planning.The conventional method of watermelon yield estimation relies heavily onmanual labor,which is both time-consuming and labor-intensive.To address this,this work proposes an algorithmic pipeline that utilizes unmanned aerial vehicle(UAV)videos for detection and counting of watermelons.This pipeline uses You Only Look Once version 8 s(YOLOv8s)with panorama stitching and overlap partitioning,which facilitates the overall number estimation ofwatermelons in field.The watermelon detection model,based on YOLOv8s and obtained using transfer learning,achieved a detection accuracy of 99.20%,demonstrating its potential for application in yield estimation.The panorama stitching and overlap partitioning based detection and counting method uses panoramic images as input and effectively mitigates the duplications comparedwith the video tracking based detection and countingmethod.The counting accuracy reached over 96.61%,proving a promising application for yield estimation.The high accuracy demonstrates the feasibility of applying this method for overall yield estimation in large watermelon fields.展开更多
基金supported by the National Natural Science Foundation of China(32371999)Science and Technology Program of Yulin City,China(2023-CXY-183)+1 种基金Open Project of Key Laboratory of Agricultural Equipment for Hilly and Mountainous Areas in Southeastern China(Co-construction by Ministry and Province),Ministry of Agriculture and Rural Affairs,China(QSKF2023002)National Foreign Expert Project,Ministry of Science and Technology,China(QN2022172006L,DL2022172003L).
文摘Accurate watermelon yield estimation is crucial to the agricultural value chain,as it guides the allocation of agricultural resources as well as facilitates inventory and logistics planning.The conventional method of watermelon yield estimation relies heavily onmanual labor,which is both time-consuming and labor-intensive.To address this,this work proposes an algorithmic pipeline that utilizes unmanned aerial vehicle(UAV)videos for detection and counting of watermelons.This pipeline uses You Only Look Once version 8 s(YOLOv8s)with panorama stitching and overlap partitioning,which facilitates the overall number estimation ofwatermelons in field.The watermelon detection model,based on YOLOv8s and obtained using transfer learning,achieved a detection accuracy of 99.20%,demonstrating its potential for application in yield estimation.The panorama stitching and overlap partitioning based detection and counting method uses panoramic images as input and effectively mitigates the duplications comparedwith the video tracking based detection and countingmethod.The counting accuracy reached over 96.61%,proving a promising application for yield estimation.The high accuracy demonstrates the feasibility of applying this method for overall yield estimation in large watermelon fields.