The abundance of broad-leaved weeds in peanut fields represents the handicap in weed management programs, since limited specific herbicides can be recommended to control them. Moreover, the physio-biochemical constitu...The abundance of broad-leaved weeds in peanut fields represents the handicap in weed management programs, since limited specific herbicides can be recommended to control them. Moreover, the physio-biochemical constituents and nutritional status in peanut plants as affected by available herbicides, i.e., bentazone under water stress conditions are not well known. Therefore, field trials were conducted during the growing seasons in 2016 and 2017 to investigate the interactional impact of irrigation levels(I_(50), I_(75) and I_(100), representing irrigation by 50%, 75% and 100% of crop evapotranspiration, respectively) and weed control practices(bentazone, bentazone+hoeing once, hoeing twice and weedy check as control) on dominant broad-leaved weeds as well as peanut physiological and agronomic traits. Result indicated that the efficiency of weed control for each weeded treatment under I_(50) significantly equaled with its counterpart under I_(75) or I_(100). Bentazone+hoeing once diminished weed biomass by 89.3% and enhanced chlorophyll content of peanut plants by 51.2%. Bentazone relatively caused a reduction in carotenoides. Hoeing twice and bentazone+hoeing once under I_(100) in both growing seasons as well as hoeing twice under I_(75) in 2017 were the superior combinations for boosting pod yield of peanut plants. Treatment of bentazone+hoeing once and I_(75) recorded the lowest reduction in N utilization percentage and the highest increase in potassium utilization percentage of peanut plants. Eliminating weeds enhanced water use efficiency by 37.8%, 49.6% and 34.7% under I_(50), I_(75) and I_(100), respectively. In conclusion, peanut seems to be tolerant to bentazone at moderate water supply, thus it can be safely used in controlling the associated broad-leaved weeds.展开更多
文摘The abundance of broad-leaved weeds in peanut fields represents the handicap in weed management programs, since limited specific herbicides can be recommended to control them. Moreover, the physio-biochemical constituents and nutritional status in peanut plants as affected by available herbicides, i.e., bentazone under water stress conditions are not well known. Therefore, field trials were conducted during the growing seasons in 2016 and 2017 to investigate the interactional impact of irrigation levels(I_(50), I_(75) and I_(100), representing irrigation by 50%, 75% and 100% of crop evapotranspiration, respectively) and weed control practices(bentazone, bentazone+hoeing once, hoeing twice and weedy check as control) on dominant broad-leaved weeds as well as peanut physiological and agronomic traits. Result indicated that the efficiency of weed control for each weeded treatment under I_(50) significantly equaled with its counterpart under I_(75) or I_(100). Bentazone+hoeing once diminished weed biomass by 89.3% and enhanced chlorophyll content of peanut plants by 51.2%. Bentazone relatively caused a reduction in carotenoides. Hoeing twice and bentazone+hoeing once under I_(100) in both growing seasons as well as hoeing twice under I_(75) in 2017 were the superior combinations for boosting pod yield of peanut plants. Treatment of bentazone+hoeing once and I_(75) recorded the lowest reduction in N utilization percentage and the highest increase in potassium utilization percentage of peanut plants. Eliminating weeds enhanced water use efficiency by 37.8%, 49.6% and 34.7% under I_(50), I_(75) and I_(100), respectively. In conclusion, peanut seems to be tolerant to bentazone at moderate water supply, thus it can be safely used in controlling the associated broad-leaved weeds.