Optical metamaterials have presented an innovative method of manipulating light.Hyperbolic metamaterials have an extremely high anisotropy with a hyperbolic dispersion relation.They are able to support high-k modes an...Optical metamaterials have presented an innovative method of manipulating light.Hyperbolic metamaterials have an extremely high anisotropy with a hyperbolic dispersion relation.They are able to support high-k modes and exhibit a high density of states which produce distinctive properties that have been exploited in various applications,such as super-resolution imaging,negative refraction,and enhanced emission control.Here,state-of-the-art hyperbolic metamaterials are reviewed,starting from the fundamental principles to applications of artificially structured hyperbolic media to suggest ways to fuse natural two-dimensional hyperbolic materials.The review concludes by indicating the current challenges and our vision for future applications of hyperbolic metamaterials.展开更多
基金POSCO-POSTECH-RIST Convergence Research Center program funded by POSCOPOSTECH-Samsung Semiconductor Research Center(IO201215-08187-01)funded by Samsung ElectronicsNational Research Foundation(NRF)grant(NRF-2019R1A2C3003129)funded by the Ministry of Science and ICT,Republic of Korea.
文摘Optical metamaterials have presented an innovative method of manipulating light.Hyperbolic metamaterials have an extremely high anisotropy with a hyperbolic dispersion relation.They are able to support high-k modes and exhibit a high density of states which produce distinctive properties that have been exploited in various applications,such as super-resolution imaging,negative refraction,and enhanced emission control.Here,state-of-the-art hyperbolic metamaterials are reviewed,starting from the fundamental principles to applications of artificially structured hyperbolic media to suggest ways to fuse natural two-dimensional hyperbolic materials.The review concludes by indicating the current challenges and our vision for future applications of hyperbolic metamaterials.