Proteins containing an expanded polyglutamine tract are neurotoxins. The expanded polyglutamine proteins influence a variety of cellular functions. In Drosophila the GMR-Gal4/UAS expression system has been widely used...Proteins containing an expanded polyglutamine tract are neurotoxins. The expanded polyglutamine proteins influence a variety of cellular functions. In Drosophila the GMR-Gal4/UAS expression system has been widely used in an eye-based model to study human neurodegenerative diseases. This system has facilitated the isolation and characterization of abundant Drosophilagenes that interact with the expanded polyglutamine proteins. We used the GMR-Gal4/UAS system to express three proteins containing an expanded polyglutamine tract, or an expanded polyglutamine tract alone. Doubling the dose of these proteins resulted in pupal lethality, indicating that these toxic proteins induced a sensitized condition that is prone to synthetic lethality. By using the GMR-Gal4/UAS system, we showed that a Drosophilagene interacts with three expanded polyglutamine proteins to induce a synthetic lethal phenotype. We further demonstrated that the synthetic lethality was mediated through the toxic expanded polyglutamine tract. Our study raises a possibility that conventional genetic screens may not recover synthetic lethal alleles, which are presumably stronger interacting alleles than the currently known modifiers of an expanded polyglutamine tract, due to synthetic lethality.展开更多
文摘Proteins containing an expanded polyglutamine tract are neurotoxins. The expanded polyglutamine proteins influence a variety of cellular functions. In Drosophila the GMR-Gal4/UAS expression system has been widely used in an eye-based model to study human neurodegenerative diseases. This system has facilitated the isolation and characterization of abundant Drosophilagenes that interact with the expanded polyglutamine proteins. We used the GMR-Gal4/UAS system to express three proteins containing an expanded polyglutamine tract, or an expanded polyglutamine tract alone. Doubling the dose of these proteins resulted in pupal lethality, indicating that these toxic proteins induced a sensitized condition that is prone to synthetic lethality. By using the GMR-Gal4/UAS system, we showed that a Drosophilagene interacts with three expanded polyglutamine proteins to induce a synthetic lethal phenotype. We further demonstrated that the synthetic lethality was mediated through the toxic expanded polyglutamine tract. Our study raises a possibility that conventional genetic screens may not recover synthetic lethal alleles, which are presumably stronger interacting alleles than the currently known modifiers of an expanded polyglutamine tract, due to synthetic lethality.