期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Localization of Plastic Deformation in Copper Canisters for Spent Nuclear Fuel
1
作者 Kati Savolainen Tapio Saukkonen hannu hanninen 《World Journal of Nuclear Science and Technology》 2012年第1期16-22,共7页
Localization of plastic deformation in different parts (extruded and forged base materials as well as EB and FSW welds) of the corrosion barrier copper canister for final disposal of spent nuclear fuel was studied usi... Localization of plastic deformation in different parts (extruded and forged base materials as well as EB and FSW welds) of the corrosion barrier copper canister for final disposal of spent nuclear fuel was studied using tensile testing, optical strain measurement, scanning electron microscopy (SEM), and electron back-scatter diffraction (EBSD). Results show that in the base materials plastic deformation occurs very uniformly. In FSW welds the deformation localizes in the weld either at the processing line or at a line of entrapped oxide particles. In EB welds the deformation localizes to the equally oriented large grains at the weld centreline or at the steep grain size gradient in the fusion line. 展开更多
关键词 COPPER DEFORMATION LOCALIZATION Friction stir Welding Electron Beam Welding
下载PDF
Multi-scale study of ductility-dip cracking in nickel-based alloy dissimilar metal weld 被引量:4
2
作者 Yifeng Li Jianqiu Wang +2 位作者 En-Hou Han Wenbo Wu hannu hanninen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第4期545-559,共15页
A ductility-dip-cracking(DDC)-concentrated zone(DCZ) in a width of about 3 mm was observed adjacent to the AISI 316 L/52 Mw fusion boundary(FB) in 52 Mw. The morphology, microstructure, mechanical and thermal properti... A ductility-dip-cracking(DDC)-concentrated zone(DCZ) in a width of about 3 mm was observed adjacent to the AISI 316 L/52 Mw fusion boundary(FB) in 52 Mw. The morphology, microstructure, mechanical and thermal properties and corrosion behavior in simulated primary water of DDC/DCZ were investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM), 3 D X-ray tomography(XRT), 3 D atom probe(3 DAP), slow strain rate tensile(SSRT) testing and thermal dilatometry. The results indicate that DDCs are random-shaped and disc-like cavities with corrugated structure of inner surface and are parallel in groups along straight high-angle boundaries of columnar grains, ranging from micrometers to millimeters in size. Large-size M_(23)C_6 carbides dominate on the grain boundaries rather than MC(M=Nb, Ti), and thus the bonding effect of carbides is absent for the straight grain boundaries.The impurity segregation of O is confirmed for the inner surfaces of DDC. The oxide film formed on the inner surface of DDC(about 50 nm) is approximately twice as thick as that on the matrix(about 25 nm)in simulated primary water. The yield strength, tensile strength and elongation to fracture of 52 MwDCZ(400 MPa, 450 MPa and 20 %, respectively) are lower than those of 52 Mw-MZ(460 MPa, 550 MPa and 28 %, respectively). The intrinsic high-restraint weld structure, the additional stress/strain caused by the thermal expansion difference between AISI 316 L and 52 Mw as well as the detrimental carbide precipitation and the resulting grain boundary structure all add up to cause the occurrence of DCZ in the dissimilar metal weld. 展开更多
关键词 Dissimilar metal weld Nickel-base alloy Ductility-dip cracking(DDC) Slow strain rate tensile(SSRT) testing Thermal expansion coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部