期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Relationship between mechanical load and surface erosion degradation of a shape memory elastomer poly(glycerol-dodecanoate)for soft tissue implant 被引量:1
1
作者 Kaixiang Jin hanqin li +3 位作者 Mingkai liang Yuqi li lizhen Wang Yubo Fan 《Regenerative Biomaterials》 SCIE EI CSCD 2023年第1期1085-1095,共11页
Poly(glycerol-dodecanoate)(PGD)has aroused increasing attention in biomedical engineering for its degradability,shape memory and rubber-like mechanical properties,giving it potential to fabricate intelligent implants ... Poly(glycerol-dodecanoate)(PGD)has aroused increasing attention in biomedical engineering for its degradability,shape memory and rubber-like mechanical properties,giving it potential to fabricate intelligent implants for soft tissues.Adjustable degradation is important for biodegradable implants and is affected by various factors.The mechanical load has been shown to play an important role in regulating polymer degradation in vivo.An in-depth investigation of PGD degradation under mechanical load is essential for adjusting its degradation behavior after implantation,further guiding to regulate degradation behavior of soft tissue implants made by PGD.In vitro degradation of PGD under different compressive and tensile load has proceeded in this study and describes the relationships by empirical equations.Based on the equations,a continuum damage model is designed to simulate surface erosion degradation of PGD under stress through finite element analysis,which provides a protocol for PGD implants with different geometric structures at varied mechanical conditions and provides solutions for predicting in vivo degradation processes,stress distribution during degradation and optimization of the loaded drug release. 展开更多
关键词 poly(glycerol-dodecanoate) in vitro degradation mechanical load surface erosion numerical simulation
原文传递
MicroRNA-29a modulates axon branching by targeting doublecortin in primary neurons 被引量:2
2
作者 hanqin li Susu Mao +3 位作者 Haitao Wang Ke Zen Chenyu Zhang liang li 《Protein & Cell》 SCIE CAS CSCD 2014年第2期160-169,共10页
MicroRNAs (miRNAs) are endogenously expressed small, non-coding transcripts that regulate protein expression. Substantial evidences suggest that miRNAs are enriched in central nervous system, where they are hypothes... MicroRNAs (miRNAs) are endogenously expressed small, non-coding transcripts that regulate protein expression. Substantial evidences suggest that miRNAs are enriched in central nervous system, where they are hypothesized to play pivotal roles during neural devel- opment. In the present study, we analyzed miRNAs expression in mice cerebral cortex and hippocampus at different developmental stages and found miR-29a increased dramatically at postnatal stages. In addition, we provided strong evidences that miR-29a is enriched in mature neurons both in vitro and in v/vo. Further investigation demonstrated that the activation of gluta- mate receptors induced endogenous miR-29a level in primary neurons. Moreover, we showed that miR-29a directly regulated its target protein Doublecortin (DCX) expression, which further modulated axon branching in primary culture. Together, our results suggested that miR-29a play an important role in neuronal development of mice cerebrum. 展开更多
关键词 MiRNAs are approximately 21 nucleotide non-codingtranscripts that are derived from hairpin precursors which
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部