期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Aging behavior and mechanical properties of 6013 aluminum alloy processed by severe plastic deformation 被引量:8
1
作者 刘满平 蒋婷慧 +5 位作者 王俊 刘强 吴振杰 Ying-da YU Pl C.SKARET hans j.roven 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3858-3865,共8页
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative... Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP. 展开更多
关键词 Al-Mg-Si aluminum alloy severe plastic deformation equal-channel angular pressing aging behavior precipitation kinetics mechanical properties strengthening mechanisms
下载PDF
Finite element analysis of strain distribution in ZK60 Mg alloy during cyclic extrusion and compression 被引量:9
2
作者 林金保 王渠东 +2 位作者 刘满平 陈勇军 hans j.roven 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1902-1906,共5页
Finite element method was used to study the strain distribution in ZK60 Mg alloy during multi-pass cyclic extrusion and compression (CEC). In order to optimize the CEC processing, the effects of friction condition a... Finite element method was used to study the strain distribution in ZK60 Mg alloy during multi-pass cyclic extrusion and compression (CEC). In order to optimize the CEC processing, the effects of friction condition and die geometry on the distribution of total equivalent plastic strain were investigated. The results show that the strain distributions in the workpieces are inhomogeneous after CEC deformation. The strains of the both ends of the workpieces are lower than that of the center region. The process parameters have significant effects on the strain distribution. The friction between die and workpiece is detrimental to strain homogeneity, thus the friction should be decreased. In order to improve the strain homogeneity, a large corner radius and a low extrusion angle should be used. 展开更多
关键词 cyclic extrusion and compression finite element method FRICTION ZK60 magnesium alloy strain homogeneity
下载PDF
Grain refinement of magnesium alloys processed by severe plastic deformation 被引量:5
3
作者 陈勇军 王渠东 +3 位作者 林金保 刘满平 Jarle HJELEN hans j.roven 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3747-3754,共8页
Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained micro... Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained microstructure of AZ31 alloy is obtained only after 3 passes of CEC at 225 ℃. The mean misorientation and the fraction of high angle grain boundaries (HAGBs) increase gradually by lowering extrusion temperature. Only a small fraction of {101^-2} twinning is observed by EBSD in AZ31 Mg alloys after 3 passes of CEC. Schmid factors calculation shows that the most active slip system is pyramidal slip {101^-1}〈1120〉and basal slip {0001}〈1120〉 at 225-350 ℃ and 400 ℃, respectively. Direct evidences at subgrain boundaries support the occurrence of continuous dynamic recrystallization (CDRX) mechanism in grain refinement of AZ31 Mg alloy processed by CEC. 展开更多
关键词 magnesium alloys grain refinement continuous dynamic recrystallization (CDRX) electron backscattering diffraction(EBSD) cyclic extrusion compression (CEC)
下载PDF
Microstructure evolution and dislocation configurations in nanostructured Al-Mg alloys processed by high pressure torsion 被引量:3
4
作者 刘满平 蒋婷慧 +3 位作者 谢学锋 刘强 李雪峰 hans j.roven 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3848-3857,共10页
Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HR... Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed. 展开更多
关键词 Al-Mg aluminum alloy severe plastic deformation high pressure torsion dislocation configurations grain refinement deformation mechanism
下载PDF
Deformation defects and electron irradiation effect in nanostructured Al-Mg alloy processed by severe plastic deformation 被引量:3
5
作者 刘满平 孙少纯 +4 位作者 hans j.roven 于瀛大 张桢 Maxim MURASHKIN Ruslan Z.VALIEV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1810-1816,共7页
In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the format... In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the formation of the planar defects in the high pressure torsion (HPT) alloys was conducted using high-resolution transmission electron microscopy (HRTEM). The results show that high density defects in the HRTEM images disappear completely when these images are exposed under the electron beam for some duration of time. At the same time, lattice defects are never observed within no-defect areas even when the beam-exposure increases to the degree that holes appear in the areas. Therefore, it is confirmed that the planar defects observed in the HPT alloys mainly result from the significant plastic deformation and are not due to the radiation effect during HRTEM observation. 展开更多
关键词 Al-Mg alloy severe plastic deformation high pressure torsion electron irradiation deformation defects transmission electron microscopy
下载PDF
Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation:Sample preparation, parameters optimization and analysis 被引量:2
6
作者 陈勇军 Jarle HJELEN hans j.roven 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1801-1809,共9页
With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBS... With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD. 展开更多
关键词 electron backscatter diffraction (EBSD) sample preparation parameters optimization step size severe plastic deformation (SPD)
下载PDF
Effect of heat treatment on microstructures and mechanical properties of high vacuum die casting Mg-8Gd-3Y-0.4Zr magnesium alloy 被引量:7
7
作者 王栀沁 张彬 +4 位作者 李德江 Robert FRITZSCH 曾小勤 hans j.roven 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3762-3768,共7页
The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. Th... The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. The microstructure for the as-cast Mg-8Gd-3Y-0.4Zr alloy mainly consists ofα-Mg and eutectic Mg24(Gd,Y)5 compound. After solution treatment, the eutectic compounds dissolve massively into the Mg matrix. The main composition of solution-treated alloys is supersaturated α-Mg and cuboid-shaped phase. The T4 heat treated samples have increasing cuboidal particles with the increase of heat treatment temperature, which turn out good mechanical properties. The optimum T4 heat treatment for high vacuum die cast Mg-8Gd-3Y-0.4Zr alloy is 475 ℃, 2 h according to microstructure results. The optimum ultimate strength and elongation of solution-treated Mg-8Gd-3Y-0.4Zr alloy are 222.1 MPa and 15.4%, respectively. The tensile fracture mode of the as-cast, and T6 heat treated alloys is transgranular quasi-cleavage fracture. 展开更多
关键词 Mg-8Gd-3Y-0.4Zr alloy heat treatment MICROSTRUCTURE mechanical property fracture behavior
下载PDF
Recycling of automotive aluminum 被引量:14
8
作者 Jirang CUI hans j.roven 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2057-2063,共7页
With the global warming of concern,the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits.In this work,re... With the global warming of concern,the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits.In this work,recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling,use of aluminum alloys in automotive applications,automotive recycling process,and new technologies in aluminum scrap process.Literature survey shows that newly developed techniques such as laser induced breakdown spectroscopy(LIBS) and solid state recycling provide promising alternatives in aluminum scrap process.Compared with conventional remelting and subsequent refinement,solid state recycling utilizing compression and extrusion at room or moderate temperature can result in significant energy savings and higher metal yield. 展开更多
关键词 RECYCLING automotive aluminum SORTING mechanical separation solid state recycling
下载PDF
Special nanostructures in Al-Mg alloys subjected to high pressure torsion 被引量:2
9
作者 刘满平 hans j.roven +4 位作者 刘新涛 Maxim MURASHKIN Ruslan Z.VALIEV Tamas UNGáR Levente BALOGH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2051-2056,共6页
Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their c... Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their coarse-grained counterparts under normal conditions. Experimental evidences are introduced on non-equilibrium grain boundaries, deformation twinnings and partial dislocation emissions from grain boundaries. Some of these features can be explained by the results reported from molecular-dynamics simulations of pure FCC metals. Special emphasis is laid on the recent observations of high density hexagonal and rhombic shaped nanostructures with an average size of 3 nm in the A1-Mg alloys processed by high pressure torsion. A possible formation process of these nanostructures is proposed based on molecular-dynamics simulations. 展开更多
关键词 aluminum alloys severe plastic deformation high pressure torsion grain boundary structure deformation twinning NANOSTRUCTURES
下载PDF
等通道转角挤压Al-Mg-Si铝合金的动态时效特性和力学性能 被引量:10
10
作者 刘满平 韦江涛 +3 位作者 李毅超 江家威 姜奎 hans j.roven 《材料研究学报》 EI CAS CSCD 北大核心 2016年第10期721-730,共10页
在不同温度对固溶处理后的6061铝合金进行等通道转角挤压(ECAP),以实现动态时效处理。采用X射线衍射(XRD)、差示扫描量热法(DSC)、透射电镜(TEM)及拉伸测试,研究了6061 Al-Mg-Si铝合金的动态时效行为和力学性能。DSC分析结果表明,合金在... 在不同温度对固溶处理后的6061铝合金进行等通道转角挤压(ECAP),以实现动态时效处理。采用X射线衍射(XRD)、差示扫描量热法(DSC)、透射电镜(TEM)及拉伸测试,研究了6061 Al-Mg-Si铝合金的动态时效行为和力学性能。DSC分析结果表明,合金在ECAP过程中发生动态时效析出。XRD,DSC和TEM的分析结果均表明,合金在动态时效过程中生成了大量的位错和β″析出相。在不同温度进行ECAP动态时效,制备出几种高韧性(均匀伸长率大于10%)和高强度兼备的6061铝合金。ECAP动态时效铝合金的最高抗拉强度和屈服强度,分别为450 MPa和425 MPa。ECAP铝合金的高强高韧,可归因于ECAP后极细的β''析出相和高密度位错的交互作用。 展开更多
关键词 金属材料 等通道转角挤压 大塑性变形 Al-Mg-Si铝合金 动态时效 力学性能 强韧性
原文传递
高压扭转大塑性变形Al–Mg合金中的晶界结构 被引量:13
11
作者 蒋婷慧 刘满平 +4 位作者 谢学锋 王俊 吴振杰 刘强 hans j.roven 《材料研究学报》 EI CAS CSCD 北大核心 2014年第5期371-379,共9页
利用透射电镜和高分辨透射电镜(HRTEM)研究了高压扭转大塑性变形纳米结构Al–Mg合金中的位错和晶界结构。结果表明:对尺寸小于100 nm的晶粒,晶内无位错,其晶界清晰平直;而尺寸大于200 nm的大晶粒通常由几个亚晶或位错胞结构组成,局部位... 利用透射电镜和高分辨透射电镜(HRTEM)研究了高压扭转大塑性变形纳米结构Al–Mg合金中的位错和晶界结构。结果表明:对尺寸小于100 nm的晶粒,晶内无位错,其晶界清晰平直;而尺寸大于200 nm的大晶粒通常由几个亚晶或位错胞结构组成,局部位错密度可高达1017m-2,这些位错往往以位错偶和位错环的形式出现。用HRTEM观察到了小角度及大角度非平衡晶界、小角度平衡晶界和大角度Σ9平衡晶界等不同的晶界结构。基于实验结果,分析了局部高密度位错、位错胞和非平衡晶界等在晶粒细化过程中的作用,提出了高压扭转Al–Mg合金的晶粒细化机制。 展开更多
关键词 金属材料 高压扭转 大塑性变形 铝合金 晶界结构 非平衡晶界 位错
原文传递
Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation 被引量:1
12
作者 Min Zha Hong-Min Zhang +6 位作者 Xiang-Tao Meng Hai-Long Jia Shen-Bao Jin Gang Sha Hui-Yuan Wang Yan-Jun Li hans j.roven 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第30期141-149,共9页
Single-phase Al-Mg alloys processed by severe plastic deformation(SPD)usually suffer from unsatisfactory thermal stability at moderate to high temperatures with recrystallization occurring and obvious grain coarsening... Single-phase Al-Mg alloys processed by severe plastic deformation(SPD)usually suffer from unsatisfactory thermal stability at moderate to high temperatures with recrystallization occurring and obvious grain coarsening.In the present work,an Al-7Mg alloy prepared by equal-channel angular pressing(ECAP)possessed markedly enhanced thermal stability upon annealing at moderate to high temperatures(200-275℃),compared with those ultrafine-grained dilute Al-Mg alloys with a uniform microstructure.The enhanced thermal stability is due primarily to the multimodal grain structure consisting of nano-,ultrafine-and micron-sized grains,strong segregation and/or clusters of Mg solute along grain boundaries(GBs),and Al_(3)Mg_(2)precipitates formed during annealing.First,extensive recovery predominates over recrystallization and consumes most of the stored energy in the ECAPed Al-7Mg alloy annealed at≤275℃,leading to the recrystallization and growth of nano/ultrafine grains being retarded or postponed.Moreover,Mg solute segregation and/or clusters along GBs of nano/ultrafine grains could further suppress grain growth via diminishing GB energy and dragging GBs efficiently.In addition,Al_(3)Mg_(2)precipitates formed with increasing annealing time could inhibit grain growth by pinning GBs.The present multimodal-grained Al-7Mg alloy with enhanced thermal stability is believed to be particularly attractive in potential engineering applications at moderate to high temperatures. 展开更多
关键词 Al-Mg alloys ECAP Multimodal grain structure Solute segregation Thermal stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部