Monochromatization of high-harmonic sources has opened fascinating perspectives regarding time-resolved photoemission from all phases of matter.Such studies have invariably involved the use of spectral filters or spec...Monochromatization of high-harmonic sources has opened fascinating perspectives regarding time-resolved photoemission from all phases of matter.Such studies have invariably involved the use of spectral filters or spectrally dispersive optical components that are inherently lossy and technically complex.Here we present a new technique for the spectral selection of near-threshold harmonics and their spatial separation from the driving beams without any optical elements.We discover the existence of a narrow phase-matching gate resulting from the combination of the non-collinear generation geometry in an extended medium,atomic resonances and absorption.Our technique offers a filter contrast of up to 104 for the selected harmonics against the adjacent ones and offers multiple temporally synchronized beamlets in a single unified scheme.We demonstrate the selective generation of 133,80 or 56 nm femtosecond pulses from a 400-nm driver,which is specific to the target gas.These results open new pathways towards phase-sensitive multi-pulse spectroscopy in the vacuum-and extreme-ultraviolet,and frequencyselective output coupling from enhancement cavities.展开更多
基金support from a starting grant(project No.307270-ATTOSCOPE)of the European Research Councilthe Swiss National Science Foundation via the National Centre of Competence in Research Molecular Ultrafast Science and Technology.
文摘Monochromatization of high-harmonic sources has opened fascinating perspectives regarding time-resolved photoemission from all phases of matter.Such studies have invariably involved the use of spectral filters or spectrally dispersive optical components that are inherently lossy and technically complex.Here we present a new technique for the spectral selection of near-threshold harmonics and their spatial separation from the driving beams without any optical elements.We discover the existence of a narrow phase-matching gate resulting from the combination of the non-collinear generation geometry in an extended medium,atomic resonances and absorption.Our technique offers a filter contrast of up to 104 for the selected harmonics against the adjacent ones and offers multiple temporally synchronized beamlets in a single unified scheme.We demonstrate the selective generation of 133,80 or 56 nm femtosecond pulses from a 400-nm driver,which is specific to the target gas.These results open new pathways towards phase-sensitive multi-pulse spectroscopy in the vacuum-and extreme-ultraviolet,and frequencyselective output coupling from enhancement cavities.