Hydrogen sulfide(H_(2)S)is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops.H_(2)S causes high corrosion in equipme...Hydrogen sulfide(H_(2)S)is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops.H_(2)S causes high corrosion in equipment,has a negative environmental impact,inhibits the biogas formation process and is furthermore odorous and toxic.Although several methods for internal and external desulfurization found their way into practice and had been explored at laboratory scale,no data were available on the performance of such methods in full scale practice,especially for an external fixed-bed trickling bioreactor(FBTB).The effects of temperature,pH and air ratio on H_(2)S removal efficiency(RE)were studied.The study was conducted at a research biogas plant with a given output of 96 m^(3) biogas per hour,and an H_(2)S concentration ranging between 500 ppm and 600 ppm(1 ppm=1 cm^(3)/m^(3))on average.The FBTB column has been designed to hold a packing volume of 2.21 m^(3) at a gas retention time of 84 seconds being loaded at an average of 32.88 g H_(2)S/(m^(3)·h).The highest H_(2)S RE of 98% was found at temperatures between 30℃ and 40℃.A major decline in RE to 21%-45%was observed at temperatures from 5℃ to 25℃.The results clearly showed a temperature optimum range for sulfate reducing bacteria.The results reveal that RE is little affected by different pH values and air ratios.During the experimental period,the practical suitability of the FBTB system could be proved while avoiding the disadvantages of internal biological desulfurization methods.展开更多
文摘Hydrogen sulfide(H_(2)S)is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops.H_(2)S causes high corrosion in equipment,has a negative environmental impact,inhibits the biogas formation process and is furthermore odorous and toxic.Although several methods for internal and external desulfurization found their way into practice and had been explored at laboratory scale,no data were available on the performance of such methods in full scale practice,especially for an external fixed-bed trickling bioreactor(FBTB).The effects of temperature,pH and air ratio on H_(2)S removal efficiency(RE)were studied.The study was conducted at a research biogas plant with a given output of 96 m^(3) biogas per hour,and an H_(2)S concentration ranging between 500 ppm and 600 ppm(1 ppm=1 cm^(3)/m^(3))on average.The FBTB column has been designed to hold a packing volume of 2.21 m^(3) at a gas retention time of 84 seconds being loaded at an average of 32.88 g H_(2)S/(m^(3)·h).The highest H_(2)S RE of 98% was found at temperatures between 30℃ and 40℃.A major decline in RE to 21%-45%was observed at temperatures from 5℃ to 25℃.The results clearly showed a temperature optimum range for sulfate reducing bacteria.The results reveal that RE is little affected by different pH values and air ratios.During the experimental period,the practical suitability of the FBTB system could be proved while avoiding the disadvantages of internal biological desulfurization methods.