The microstructural evolution and mechanical behavior of Mg-Mn-Ce magnesium alloy were investigated in the present study.Mg alloy was prepared with metal model casting method and subsequently hot extruded at 703 K wit...The microstructural evolution and mechanical behavior of Mg-Mn-Ce magnesium alloy were investigated in the present study.Mg alloy was prepared with metal model casting method and subsequently hot extruded at 703 K with the reduction ratio of 101:1.The grains were dynamically recrystallized after the extrusion process.Moreover,the(0002)pole figure of Mg-Mn-Ce alloy developed a splitting of pronounced basal texture.The mechanical properties were different due to different angles between c-axis and loading direction(0°,45°and 90°)in the tensile tests.This significantly induces an asymmetry in the yield behavior.The Mg-Mn-Ce alloy exhibits a classical dimple structure as a result of slip accumulation and ductile tear.展开更多
基金The authors are grateful for the financial supports from National Natural Science Foundation of China(51171212)Chongqing Science and Technology Commission(CSTC2012JJJQ50001,CSTC2013jcyjC60001,cstc2012ggB50003)+1 种基金The National Science and Technology Program of China(2013DFA71070)the Fundamental Research Funds for the Central Universities(CDJZR13138801).
文摘The microstructural evolution and mechanical behavior of Mg-Mn-Ce magnesium alloy were investigated in the present study.Mg alloy was prepared with metal model casting method and subsequently hot extruded at 703 K with the reduction ratio of 101:1.The grains were dynamically recrystallized after the extrusion process.Moreover,the(0002)pole figure of Mg-Mn-Ce alloy developed a splitting of pronounced basal texture.The mechanical properties were different due to different angles between c-axis and loading direction(0°,45°and 90°)in the tensile tests.This significantly induces an asymmetry in the yield behavior.The Mg-Mn-Ce alloy exhibits a classical dimple structure as a result of slip accumulation and ductile tear.