期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Capacitive charge storage enables an ultrahigh cathode capacity in aluminum-graphene battery 被引量:4
1
作者 hanyan xu Hao Chen +5 位作者 Haiwen Lai Zheng Li Xiaozhong Dong Shengying Cai Xingyuan Chu Chao Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期40-44,I0002,共6页
Aluminum^-graphene battery is promising for its abundant raw materials,high power density,ultralong cycle life and superior safety.However,the development of aluminum^-graphene battery is currently restricted by its i... Aluminum^-graphene battery is promising for its abundant raw materials,high power density,ultralong cycle life and superior safety.However,the development of aluminum^-graphene battery is currently restricted by its insufficient cathode capacity,calling for a newly developed working mechanism.In addition,an irregular constant increase of the cathode capacity was always observed during cycling,but cannot be explained based on the current understanding.Here,we observed an increase of specific capacity by 60%with stable Coulombic efficiency of 98%during 7000 cycles life of Al-graphene batteries employing AlCl3/ET3NHCl electrolyte.We demonstrated this growing cathode capacity is attributed to an increasing contribution of capacitive charge storage during cycling,because a gradually enlarged surface area as capacitive active sites is enabled by the exfoliation of graphitic cathode during the periodic intercalation process.Moreover,the graphene cathode was exfoliated more significantly in AlCl3/ET3NHCl than 1-ethyl-3-methylimidazolium chloride-based electrolyte,which results from the heavier stress on the graphene layers caused by the larger intercalants in AlCl3/ET3NHCl.The common intercalation of cations with AlCl4-clusters was therefore supposed to occur during charging.This new proposed mechanism can offer the new thought for future design on high-capacity cathode of Al-ion battery. 展开更多
关键词 Al-graphene BATTERY INTERCALATED GRAPHENE Capacitive charge storage INCREASING capacity EXFOLIATION
下载PDF
Oligopeptide Self-Assembly:Mechanisms,Stimuli-Responsiveness,and Biomedical Applications
2
作者 Lei Ge hanyan xu +1 位作者 Xin Jiang Jing Yu 《CCS Chemistry》 2024年第1期69-90,共22页
Oligopeptide self-assembly materials have emerged as a promising class of biomaterials with diverse applications in biomedicine.This review highlights the recent progress in comprehending the selfassembly mechanisms i... Oligopeptide self-assembly materials have emerged as a promising class of biomaterials with diverse applications in biomedicine.This review highlights the recent progress in comprehending the selfassembly mechanisms intrinsic to oligopeptides and their behavior in response to specific stimuli.By methodically structuring the amino acid sequence and managing external stimuli such as pH levels,redox conditions,or enzymatic activity,we can exercise unprecedented control over the self-assembly process.By controlling the self-assembly process of oligopeptides,various structures with extraordinary versatility can be obtained,including micelles,nanofibers,and coacervate droplets,each possessing modifiable mechanical and chemical properties.Furthermore,these self-assembled constructs demonstrate immense potential within varied biomedical applications.The stimuli-sensitive nature of oligopeptide assembly materials facilitates timely encapsulation and release of therapeutic cargos,consequently eliciting desired cellular responses.This approach paves the way for more precise tumor targeting,personalized medicinal treatments,and well-regulated drug dispensation.Their innate biocompatibility and proficiency in replicating the extracellular matrix(ECM)render them ideally suited for applications such as tissue engineering,wound remediation,and regenerative medicine.In summary,oligopeptide self-assembling materials show tremendous potential as adaptable platforms for cutting-edge biomedical applications,thereby bridging the divide between fundamental research and practical clinical application. 展开更多
关键词 oligopeptides self-assembly nonequilibrium stimuli-responsive behavior biomedical applications
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部