期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent progress in the development of dielectric elastomer materials and their multilayer actuators
1
作者 Shengchao JIANG Junbo PENG +2 位作者 Lvting WANG hanzhi ma Ye SHI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第3期183-205,共23页
Dielectric elastomers(DEs)have emerged as one of the most promising artificial muscle technologies,due to their exceptional properties such as large actuation strain,fast response,high energy density,and flexible proc... Dielectric elastomers(DEs)have emerged as one of the most promising artificial muscle technologies,due to their exceptional properties such as large actuation strain,fast response,high energy density,and flexible processibility for various configurations.Over the past two decades,researchers have been working on developing DE materials with improved properties and exploring innovative applications of dielectric elastomer actuators(DEAs).This review article focuses on two main topics:recent material innovation of DEs and development of multilayer stacking processes for DEAs,which are important to promoting commercialization of DEs.It begins by explaining the working principle of a DEA.Then,recently developed strategies for preparing new DE materials are introduced,including reducing mechanical stiffness,increasing dielectric permittivity,suppressing viscoelasticity loss,and mitigating electromechanical instability without pre-stretching.In the next section,different multilayer stacking methods for fabricating multilayer DEAs are discussed,including conventional dry stacking,wet stacking,a novel dry stacking method,and micro-fabrication-enabled stacking techniques.This review provides a comprehensive and up-to-date overview of recent developments in high-performance DE materials and multilayer stacking methods.It highlights the progress made in the field and also discusses potential future directions for further advancements. 展开更多
关键词 Dielectric elastomer actuator(DEA) Dielectric elastomer(DE) Material svnthesis Multilaver stacking method
原文传递
An Electromagnetic Perspective of Artificial Intelligence Neuromorphic Chips
2
作者 Er-Ping Li hanzhi ma +6 位作者 manareldeen Ahmed Tuomin Tao Zheming Gu Mufeng Chen Quankun Chen Da Li Wenchao Chen 《Electromagnetic Science》 2023年第3期50-67,共18页
The emergence of artificial intelligence has represented great potential in solving a wide range of complex problems.However,traditional general-purpose chips based on von Neumann architectures face the“memory wall”... The emergence of artificial intelligence has represented great potential in solving a wide range of complex problems.However,traditional general-purpose chips based on von Neumann architectures face the“memory wall”problem when applied in artificial intelligence applications.Based on the efficiency of the human brain,many intelligent neuromorphic chips have been proposed to emulate its working mechanism and neuron-synapse structure.With the emergence of spiking-based neuromorphic chips,the computation and energy efficiency of such devices could be enhanced by integrating a variety of features inspired by the biological brain.Aligning with the rapid development of neuromorphic chips,it is of great importance to quickly initiate the investigation of the electromagnetic interference and signal integrity issues related to neuromorphic chips for both CMOS-based and memristor-based artificial intelligence integrated circuits.Here,this paper provides a review of neuromorphic circuit design and algorithms in terms of electromagnetic issues and opportunities with a focus on signal integrity issues,modeling,and optimization.Moreover,the heterogeneous structures of neuromorphic circuits and other circuits,such as memory arrays and sensors using different integration technologies,are also reviewed,and locations where signal integrity might be compromised are discussed.Finally,we provide future trends in electromagnetic interference and signal integrity and outline prospects for upcoming neuromorphic devices. 展开更多
关键词 Signal integrity Electromagnetic interference Electromagnetic design Neuromorphic chips Heterogeneous integration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部