Suppression of cellular O-linkedβ-N-acetylglucosaminylation(O-Glc NAcylation)can repress proliferation and migration of various cancer cells,which opens a new avenue for cancer therapy.Based on the regulation of insu...Suppression of cellular O-linkedβ-N-acetylglucosaminylation(O-Glc NAcylation)can repress proliferation and migration of various cancer cells,which opens a new avenue for cancer therapy.Based on the regulation of insulin gene transcription,we designed a cell-based fluorescent reporter capable of sensing cellular O-Glc NAcylation in HEK293 T cells.The fluorescent reporter mainly consists of a reporter(green fluorescent protein(GFP)),an internal reference(red fluorescent protein),and an operator(neuronal differentiation 1),which serves as a"sweet switch"to control GFP expression in response to cellular OGlc NAcylation changes.The fluorescent reporter can efficiently sense reduced levels of cellular OGlc NAcylation in several cell lines.Using the fluorescent reporter,we screened 120 natural products and obtained one compound,sesamin,which could markedly inhibit protein O-Glc NAcylation in He La and human colorectal carcinoma-116 cells and repress their migration in vitro.Altogether,the present study demonstrated the development of a novel strategy for anti-tumor drug screening,as well as for conducting gene transcription studies.展开更多
Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational e...Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational expense. The present paper focuses on analyzing these energy spectral "breaks" by Monte Carlo particle simulations of an isolated CME-driven shock. Taking the 2006 Dec 14 CME-driven shock as an example, we investigate the formation of this energy spectral property. For this purpose, we apply different values for the scattering time in our isolated shock model to obtain the highest energy "tails," which can potentially exceed the "break" energy range. However, we have not found the highest energy "tails" beyond the "break" energy range, but instead find that the highest energy "tails" reach saturation near the range of energy at 5 MeV. So, we believe that there exists an energy spectral "cut off" in an isolated shock. If there is no interaction with another shock, there would not be formation of the energy spectral "break" property.展开更多
基金financial support from the National Natural Science Foundation of China(Grant No.:31470795)Tianjin Municipal Science and Technology Commission(Grant No.:15JCYBJC24100)the“Fundamental Research Funds for the Central Universities”,Nankai University(Grant No.:63191148)。
文摘Suppression of cellular O-linkedβ-N-acetylglucosaminylation(O-Glc NAcylation)can repress proliferation and migration of various cancer cells,which opens a new avenue for cancer therapy.Based on the regulation of insulin gene transcription,we designed a cell-based fluorescent reporter capable of sensing cellular O-Glc NAcylation in HEK293 T cells.The fluorescent reporter mainly consists of a reporter(green fluorescent protein(GFP)),an internal reference(red fluorescent protein),and an operator(neuronal differentiation 1),which serves as a"sweet switch"to control GFP expression in response to cellular OGlc NAcylation changes.The fluorescent reporter can efficiently sense reduced levels of cellular OGlc NAcylation in several cell lines.Using the fluorescent reporter,we screened 120 natural products and obtained one compound,sesamin,which could markedly inhibit protein O-Glc NAcylation in He La and human colorectal carcinoma-116 cells and repress their migration in vitro.Altogether,the present study demonstrated the development of a novel strategy for anti-tumor drug screening,as well as for conducting gene transcription studies.
基金supported by the Xinjiang Natural Science Foundation(No.2014211A069)funded by the Key Laboratory of Solar Activity of NAOC,the Key Laboratory of Modern Astronomy and Astrophysics(Nanjing University)Ministry of Education,and the China Scholarship Council(CSC)
文摘Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational expense. The present paper focuses on analyzing these energy spectral "breaks" by Monte Carlo particle simulations of an isolated CME-driven shock. Taking the 2006 Dec 14 CME-driven shock as an example, we investigate the formation of this energy spectral property. For this purpose, we apply different values for the scattering time in our isolated shock model to obtain the highest energy "tails," which can potentially exceed the "break" energy range. However, we have not found the highest energy "tails" beyond the "break" energy range, but instead find that the highest energy "tails" reach saturation near the range of energy at 5 MeV. So, we believe that there exists an energy spectral "cut off" in an isolated shock. If there is no interaction with another shock, there would not be formation of the energy spectral "break" property.