A global mapping data of atmospheric carbon dioxide(CO_(2))concen-trations can help us to better understand the spatiotemporal varia-tions of CO_(2) and the driving factors of the variations to support the actions for...A global mapping data of atmospheric carbon dioxide(CO_(2))concen-trations can help us to better understand the spatiotemporal varia-tions of CO_(2) and the driving factors of the variations to support the actions for emissions reduction and control.Greenhouse gases satel-lites that measure atmospheric CO_(2),such as the Greenhouse Gases Observing Satellite(GOSAT)and Orbiting Carbon Observatory(OCO-2),have been providing global observations of the column averaged dry-air mole fractions of CO_(2)(XCO_(2))since 2009.However,these XCO_(2) retrievals are irregular in space and time with many gaps.In this paper,we mapped a global spatiotemporally continuous XCO_(2) data-set(Mapping-XCO_(2))using the XCO_(2) retrievals from GOSAT and OCO-2 during the period from April 2009 to December 2020 based on a geostatistical approach that fills those data gaps.The dataset covers a geographic range from 56°S to 65°N and 169°W to 180°E for a 1°grid interval in space and 3-day time interval.The uncer-tainties of the mapped XCO_(2) values are generally less than 1.5 parts per million(ppm).The spatiotemporal characteristics of global XCO_(2) that are revealed by the Mapping-XCO_(2) are similar to the model data obtained from CarbonTracker.Compared to the ground observa-tions,the overall standard bias is 1.13 ppm.The results indicate that this long-term Mapping-XCO_(2) dataset can be used to investigate the spatiotemporal variations of global atmospheric XCO_(2) and can support studies related to the carbon cycle and anthropogenic CO_(2) emissions.The dataset is available at http://www.doi.org/10.7910/DVN/4WDTD8 and https://www.scidb.cn/en/detail?dataSetId=c2c3111b421043fc8d9b163c39e6f56e.展开更多
基金This work was supported by the National Key Research and Development Program of China(Grant No.2020YFA0607503)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19080303)the Key Program of the Chinese Academy of Sciences(Grant No.ZDRW-ZS-2019-1-3).
文摘A global mapping data of atmospheric carbon dioxide(CO_(2))concen-trations can help us to better understand the spatiotemporal varia-tions of CO_(2) and the driving factors of the variations to support the actions for emissions reduction and control.Greenhouse gases satel-lites that measure atmospheric CO_(2),such as the Greenhouse Gases Observing Satellite(GOSAT)and Orbiting Carbon Observatory(OCO-2),have been providing global observations of the column averaged dry-air mole fractions of CO_(2)(XCO_(2))since 2009.However,these XCO_(2) retrievals are irregular in space and time with many gaps.In this paper,we mapped a global spatiotemporally continuous XCO_(2) data-set(Mapping-XCO_(2))using the XCO_(2) retrievals from GOSAT and OCO-2 during the period from April 2009 to December 2020 based on a geostatistical approach that fills those data gaps.The dataset covers a geographic range from 56°S to 65°N and 169°W to 180°E for a 1°grid interval in space and 3-day time interval.The uncer-tainties of the mapped XCO_(2) values are generally less than 1.5 parts per million(ppm).The spatiotemporal characteristics of global XCO_(2) that are revealed by the Mapping-XCO_(2) are similar to the model data obtained from CarbonTracker.Compared to the ground observa-tions,the overall standard bias is 1.13 ppm.The results indicate that this long-term Mapping-XCO_(2) dataset can be used to investigate the spatiotemporal variations of global atmospheric XCO_(2) and can support studies related to the carbon cycle and anthropogenic CO_(2) emissions.The dataset is available at http://www.doi.org/10.7910/DVN/4WDTD8 and https://www.scidb.cn/en/detail?dataSetId=c2c3111b421043fc8d9b163c39e6f56e.