Using first-principles calculations, we predict a new type of two-dimensional(2D) boride MB3(M = Be,Ca, Sr), constituted by boron kagome monolayer and the metal atoms adsorbed above the center of the boron hexagons. T...Using first-principles calculations, we predict a new type of two-dimensional(2D) boride MB3(M = Be,Ca, Sr), constituted by boron kagome monolayer and the metal atoms adsorbed above the center of the boron hexagons. The band structures show that the three MB3compounds are metallic, thus the possible phononmediated superconductivity is explored. Based on the Eliashberg equation, for BeB3, CaB3, and SrB3, the calculated electron–phonon coupling constants λ are 0.46, 1.09, and 1.33, and the corresponding superconducting transition temperatures Tc are 3.2, 22.4, and 20.9 K, respectively. To explore superconductivity with higher transition temperature, hydrogenation and charge doping are further considered. The hydrogenated CaB3, i.e.,HCaB3, is stable, with the enhanced λ of 1.39 and a higher Tc of 39.3 K. Moreover, with further hole doping at the concentration of 5.8 × 1011hole/cm2, the Tc of HCaB3can be further increased to 44.2 K, exceeding the Mc Millan limit. The predicted MB3and HCaB3provide new platforms for investigating 2D superconductivity in boron kagome lattice since superconductivity based on monolayer boron kagome lattice has not been studied before.展开更多
Using first-principles calculations,we predict a new type of two-dimensional(2D)beryllium(Be)-decorated T-graphene named BeC_(2),where Be atoms are inserted into C–C bonds linking the carbon tetrarings of T-graphene....Using first-principles calculations,we predict a new type of two-dimensional(2D)beryllium(Be)-decorated T-graphene named BeC_(2),where Be atoms are inserted into C–C bonds linking the carbon tetrarings of T-graphene.The band structure shows that BeC_(2)is metallic,thus,the possible phonon-mediated superconductivity is explored based on the Eliashberg equation.The calculated electron-phonon coupling(EPC)constantλis up to 4.07,and the corresponding superconducting critical temperature(Tc)is 72.1 K,approaching the liquid nitrogen temperature.The reason for the high Tc is the strong EPC.And it is proved to be an anisotropic single-gap superconductor by analyzing the superconducting gap?kof BeC_(2).The electronic susceptibility calculation shows strong nesting effect in BeC_(2).Since rare 2D superconductors show such a strong EPC constantλwhich originates from the coupling between electrons in C-pzorbital and in-plane vibrations of Be and C atoms,the predicted BeC_(2)provides a new platform for investigating strong EPC 2D superconductor.展开更多
Let a and b be positive integers such that a≤b and a≡b(mod 2).We say that G has all(a,b)-parity factors if G has an h-factor for every function h:V(G)→{a,a+2,…,b-2,b} with b|V(G)| even and h(v)≡b(mod 2) for all v...Let a and b be positive integers such that a≤b and a≡b(mod 2).We say that G has all(a,b)-parity factors if G has an h-factor for every function h:V(G)→{a,a+2,…,b-2,b} with b|V(G)| even and h(v)≡b(mod 2) for all v∈V(G).In this paper,we prove that every graph G with n≥2(b+1)(a+b) vertices has all(a,b)-parity factors if δ(G)≥(b^(2)-b)/a,and for any two nonadjacent vertices u,v ∈V(G),max{d_(G)(u),d_(G)(v)}≥bn/a+b.Moreover,we show that this result is best possible in some sense.展开更多
Carbon materials are crucially important for the realization of potassium-ion batteries.However,the potassium storage mechanisms in various carbon materials are incompletely understood.Herein,solid-state ^(13)C nuclea...Carbon materials are crucially important for the realization of potassium-ion batteries.However,the potassium storage mechanisms in various carbon materials are incompletely understood.Herein,solid-state ^(13)C nuclear magnetic resonance(NMR) spectroscopy coupled with Raman and X-ray diffraction(XRD) techniques are employed to study the reaction mechanism in a soft carbon quantitatively.It is revealed that the insertion of potassium ions into the soft carbon firstly induces a transformation of the disordered region to short-range ordered stacking,involving both the pristine local unorganized and organized carbon layers.Subsequently,potassium ions intercalate into the rearranged carbon structure,finally producing the nano-sized KC_(8).Moreover,a remarkable c apacity of 322 mAh·g^(-1) with a low mid potassiation voltage of <0.3 V is present for the prepared soft carbon,which is on account of the underlying potassium storage sites,including the disordered stacking carbon as a main component of the soft carbon.These results suggest that regulating the disordered stacking region in the turbostratic structure of soft carbon is a critical issue for further improving the potassium storage performance.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12074213,11574108,and 12104253)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)+1 种基金the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Provincethe Texas Center for Superconductivity at University of Houston,the Robert A.Welch Foundation(Grant No.E-1146)。
文摘Using first-principles calculations, we predict a new type of two-dimensional(2D) boride MB3(M = Be,Ca, Sr), constituted by boron kagome monolayer and the metal atoms adsorbed above the center of the boron hexagons. The band structures show that the three MB3compounds are metallic, thus the possible phononmediated superconductivity is explored. Based on the Eliashberg equation, for BeB3, CaB3, and SrB3, the calculated electron–phonon coupling constants λ are 0.46, 1.09, and 1.33, and the corresponding superconducting transition temperatures Tc are 3.2, 22.4, and 20.9 K, respectively. To explore superconductivity with higher transition temperature, hydrogenation and charge doping are further considered. The hydrogenated CaB3, i.e.,HCaB3, is stable, with the enhanced λ of 1.39 and a higher Tc of 39.3 K. Moreover, with further hole doping at the concentration of 5.8 × 1011hole/cm2, the Tc of HCaB3can be further increased to 44.2 K, exceeding the Mc Millan limit. The predicted MB3and HCaB3provide new platforms for investigating 2D superconductivity in boron kagome lattice since superconductivity based on monolayer boron kagome lattice has not been studied before.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074213,11574108,12074381,and 12104458)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province。
文摘Using first-principles calculations,we predict a new type of two-dimensional(2D)beryllium(Be)-decorated T-graphene named BeC_(2),where Be atoms are inserted into C–C bonds linking the carbon tetrarings of T-graphene.The band structure shows that BeC_(2)is metallic,thus,the possible phonon-mediated superconductivity is explored based on the Eliashberg equation.The calculated electron-phonon coupling(EPC)constantλis up to 4.07,and the corresponding superconducting critical temperature(Tc)is 72.1 K,approaching the liquid nitrogen temperature.The reason for the high Tc is the strong EPC.And it is proved to be an anisotropic single-gap superconductor by analyzing the superconducting gap?kof BeC_(2).The electronic susceptibility calculation shows strong nesting effect in BeC_(2).Since rare 2D superconductors show such a strong EPC constantλwhich originates from the coupling between electrons in C-pzorbital and in-plane vibrations of Be and C atoms,the predicted BeC_(2)provides a new platform for investigating strong EPC 2D superconductor.
基金supported by the National Natural Science Foundation of China (No.12271425 and No.11871391)。
文摘Let a and b be positive integers such that a≤b and a≡b(mod 2).We say that G has all(a,b)-parity factors if G has an h-factor for every function h:V(G)→{a,a+2,…,b-2,b} with b|V(G)| even and h(v)≡b(mod 2) for all v∈V(G).In this paper,we prove that every graph G with n≥2(b+1)(a+b) vertices has all(a,b)-parity factors if δ(G)≥(b^(2)-b)/a,and for any two nonadjacent vertices u,v ∈V(G),max{d_(G)(u),d_(G)(v)}≥bn/a+b.Moreover,we show that this result is best possible in some sense.
基金financially supported by the National Nature Science Foundation of China (Nos.21905314, 21825202,21733012,92045302 and 21603231)Newton Advanced Fellowships (No.NAF/R2/180603)+1 种基金"Scientist Studio Funding" from Tianmu Lake Institute of Advanced Energy Storage Technologies Co.,Ltdthe Science and Technology Service Network Initiative from Chinese Academy of Science (No.STS 2020T3022)。
文摘Carbon materials are crucially important for the realization of potassium-ion batteries.However,the potassium storage mechanisms in various carbon materials are incompletely understood.Herein,solid-state ^(13)C nuclear magnetic resonance(NMR) spectroscopy coupled with Raman and X-ray diffraction(XRD) techniques are employed to study the reaction mechanism in a soft carbon quantitatively.It is revealed that the insertion of potassium ions into the soft carbon firstly induces a transformation of the disordered region to short-range ordered stacking,involving both the pristine local unorganized and organized carbon layers.Subsequently,potassium ions intercalate into the rearranged carbon structure,finally producing the nano-sized KC_(8).Moreover,a remarkable c apacity of 322 mAh·g^(-1) with a low mid potassiation voltage of <0.3 V is present for the prepared soft carbon,which is on account of the underlying potassium storage sites,including the disordered stacking carbon as a main component of the soft carbon.These results suggest that regulating the disordered stacking region in the turbostratic structure of soft carbon is a critical issue for further improving the potassium storage performance.