Chiral anomaly is a distinct quantum anomaly associated with chiral fermions in Dirac or Weyl semimetals.The use of negative magnetoresistance(negative MR)as a signature for this anomaly remains contentious,as trivial...Chiral anomaly is a distinct quantum anomaly associated with chiral fermions in Dirac or Weyl semimetals.The use of negative magnetoresistance(negative MR)as a signature for this anomaly remains contentious,as trivial mechanisms such as current jetting and weak localization can also induce negative MR.In this study,we report a novel nonlinear behavior of the chiral anomaly in the longitudinal direction,which we observed by applying parallel current and magnetic field to the Dirac semimetal Cd_(3)A_(s_(2)).This nonlinear characteristic peaks at an intermediate magnetic field of approximately5 T,displaying a resistance-increasing property concomitant with strengthening of the current source.Through angledependence experiments,we were able to rule out trivial factors,such as thermal effects,geometric artifacts,and anisotropy.Furthermore,additional electric quantum oscillations were observed when the direct current(DC)was applied as high as300μA.Such an unusual phenomenon is ascribed to the formation of quantized levels due to Bloch oscillation in the high DC regime,suggesting that an oscillatory density distribution may arise as the electric field increases.The non-Ohmic electric quantum oscillations open a new avenue for exploring chiral anomaly and other nontrivial topological properties,which is also one of the salient features of nonequilibrium steady states in condensed matter physics.展开更多
Topological insulators and semimetals have exotic surface and bulk states with massless Dirac or Weyl fermions,demonstrating microscopic transport phenomenon based on relativistic theory.Chiral anomaly induced negativ...Topological insulators and semimetals have exotic surface and bulk states with massless Dirac or Weyl fermions,demonstrating microscopic transport phenomenon based on relativistic theory.Chiral anomaly induced negative magnetoresistance(negative MR)under parallel magnetic field and current has been used as a probable evidence ofWeyl fermions in recent years.Here we report a novel negative MR result with mutually perpendicular in-plane magnetic field and current in Cd_(3)As_(2)nanowires.The negative MR has a considerable value of-16%around 1.5 K and could persist to room temperature of 300 K with value of-1%.The gate tuning and angle dependence of the negative MR demonstrate the mechanism of the observed negative MR is different from the chiral anomaly.Percolating current paths induced by charge puddles and disorder might be involved to produce such considerable negative MR.Our results indicate the negative MR effect in topological semimetals involves synergistic effects of many mechanisms besides chiral anomaly.展开更多
Introducing ferromagnetism into non-magnetic systems without the participation of magnetic elements is promising for all-electric spintronic devices[1,2].Many approaches have been pursued,such as non-magnetic defects ...Introducing ferromagnetism into non-magnetic systems without the participation of magnetic elements is promising for all-electric spintronic devices[1,2].Many approaches have been pursued,such as non-magnetic defects induced magnetization in layered materials[3–5]or the inversion symmetry breaking induced magnetization in magic-angle bilayer graphene[6–8],etc.However,these approaches have to tackle with the localization effects or the inevitable precise control of twist angle,which hinders the future application into large-scale spintronic information devices.Theorists also predicted that the spontaneous ferromagnetism could emerge in the quasi-2D crystals[9]like GaSe,but no experimental results have been reported.Here,we report the spontaneous ferromagnetism induced by van Hove singularity[9–13]in non-magnetic groupⅣGe_(1–x)Sn_(x)alloys grown by the molecular beam epitaxy(MBE)technique.Our findings experimentally open up an opportunity to realize spintronics in groupⅣsemiconductors.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12074162,12004158,and 91964201)the National Key Research and Development Program of China(Grant Nos.2022YFA1403700 and 2020YFA0309300)+2 种基金the Key-Area Research and Development Program of Guangdong Province(Grant No.2018B030327001)Guangdong Provincial Key Laboratory(Grant No.2019B121203002)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515130005)。
文摘Chiral anomaly is a distinct quantum anomaly associated with chiral fermions in Dirac or Weyl semimetals.The use of negative magnetoresistance(negative MR)as a signature for this anomaly remains contentious,as trivial mechanisms such as current jetting and weak localization can also induce negative MR.In this study,we report a novel nonlinear behavior of the chiral anomaly in the longitudinal direction,which we observed by applying parallel current and magnetic field to the Dirac semimetal Cd_(3)A_(s_(2)).This nonlinear characteristic peaks at an intermediate magnetic field of approximately5 T,displaying a resistance-increasing property concomitant with strengthening of the current source.Through angledependence experiments,we were able to rule out trivial factors,such as thermal effects,geometric artifacts,and anisotropy.Furthermore,additional electric quantum oscillations were observed when the direct current(DC)was applied as high as300μA.Such an unusual phenomenon is ascribed to the formation of quantized levels due to Bloch oscillation in the high DC regime,suggesting that an oscillatory density distribution may arise as the electric field increases.The non-Ohmic electric quantum oscillations open a new avenue for exploring chiral anomaly and other nontrivial topological properties,which is also one of the salient features of nonequilibrium steady states in condensed matter physics.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12004158,12074162,and 91964201)the National Key Research and Development Program of China(Grant Nos.2022YFA1403700 and 2020YFA0309300)+2 种基金the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2018B030327001)Guangdong Provincial Key Laboratory(Grant No.2019B121203002)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515130005).
文摘Topological insulators and semimetals have exotic surface and bulk states with massless Dirac or Weyl fermions,demonstrating microscopic transport phenomenon based on relativistic theory.Chiral anomaly induced negative magnetoresistance(negative MR)under parallel magnetic field and current has been used as a probable evidence ofWeyl fermions in recent years.Here we report a novel negative MR result with mutually perpendicular in-plane magnetic field and current in Cd_(3)As_(2)nanowires.The negative MR has a considerable value of-16%around 1.5 K and could persist to room temperature of 300 K with value of-1%.The gate tuning and angle dependence of the negative MR demonstrate the mechanism of the observed negative MR is different from the chiral anomaly.Percolating current paths induced by charge puddles and disorder might be involved to produce such considerable negative MR.Our results indicate the negative MR effect in topological semimetals involves synergistic effects of many mechanisms besides chiral anomaly.
基金the Key-Area Research and Development Program of Guangdong Province(2020B0303060001,and 2018B030327001)the National Natural Science Foundation of China(61874109,61922077,12004158,and 12074162)+1 种基金the National Key Research and Development Program of China(2018YFB2200100,and 2020YFA0309300)Guangdong Provincial Key Laboratory(2019B121203002)。
文摘Introducing ferromagnetism into non-magnetic systems without the participation of magnetic elements is promising for all-electric spintronic devices[1,2].Many approaches have been pursued,such as non-magnetic defects induced magnetization in layered materials[3–5]or the inversion symmetry breaking induced magnetization in magic-angle bilayer graphene[6–8],etc.However,these approaches have to tackle with the localization effects or the inevitable precise control of twist angle,which hinders the future application into large-scale spintronic information devices.Theorists also predicted that the spontaneous ferromagnetism could emerge in the quasi-2D crystals[9]like GaSe,but no experimental results have been reported.Here,we report the spontaneous ferromagnetism induced by van Hove singularity[9–13]in non-magnetic groupⅣGe_(1–x)Sn_(x)alloys grown by the molecular beam epitaxy(MBE)technique.Our findings experimentally open up an opportunity to realize spintronics in groupⅣsemiconductors.