We reported an ultrabroadband mid-infrared(MIR)emission in the range of 1800 nm-3100 nm at room temperature(RT)from a Cr^(2+):ZnSe-doped chalcogenide glasses(ChGs)and studied the emission-dependent properties on the d...We reported an ultrabroadband mid-infrared(MIR)emission in the range of 1800 nm-3100 nm at room temperature(RT)from a Cr^(2+):ZnSe-doped chalcogenide glasses(ChGs)and studied the emission-dependent properties on the doping methods.A series of Cr^(2+):ZnSe/As_(40)S_(57)Se_(3)(in unit wt.%)glass-ceramics were prepared by hot uniaxial pressing(HUP)and melt-quenching methods,respectively.The glass-ceramics with MIR emission bands greater than 1000 nm were successfully prepared by both methods.The effects of matrix glass composition and grain doping concentration on the optical properties of the samples were studied.The occurrence state,morphology of the grains,and the microscopic elemental distributions were characterized using x-ray diffraction(XRD),scanning electron microscope(SEM),and energy dispersive spectrometer(EDS)analyses.展开更多
基金Project supported by the Key Research and Development Program of Zhejiang Province,China (Grant No. 2021C01025)the National Natural Science Foundation of China (Grant Nos. 61975086 and 61605095)+3 种基金the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19F050004)the National Key Research and Development Program of China (Grant No. 2016YFB0303803)the K. C. Wong Magna Fund at Ningbo Universitythe Natural Science Foundation of Ningbo (Grant No. 202003N4180)
文摘We reported an ultrabroadband mid-infrared(MIR)emission in the range of 1800 nm-3100 nm at room temperature(RT)from a Cr^(2+):ZnSe-doped chalcogenide glasses(ChGs)and studied the emission-dependent properties on the doping methods.A series of Cr^(2+):ZnSe/As_(40)S_(57)Se_(3)(in unit wt.%)glass-ceramics were prepared by hot uniaxial pressing(HUP)and melt-quenching methods,respectively.The glass-ceramics with MIR emission bands greater than 1000 nm were successfully prepared by both methods.The effects of matrix glass composition and grain doping concentration on the optical properties of the samples were studied.The occurrence state,morphology of the grains,and the microscopic elemental distributions were characterized using x-ray diffraction(XRD),scanning electron microscope(SEM),and energy dispersive spectrometer(EDS)analyses.