This paper presents a 591×438-DPI ultrasonic fingerprint sensor.The sensor is based on a piezoelectric micromachined ultrasonic transducer(PMUT)array that is bonded at wafer-level to complementary metal oxide sem...This paper presents a 591×438-DPI ultrasonic fingerprint sensor.The sensor is based on a piezoelectric micromachined ultrasonic transducer(PMUT)array that is bonded at wafer-level to complementary metal oxide semiconductor(CMOS)signal processing electronics to produce a pulse-echo ultrasonic imager on a chip.To meet the 500-DPI standard for consumer fingerprint sensors,the PMUT pitch was reduced by approximately a factor of two relative to an earlier design.We conducted a systematic design study of the individual PMUT and array to achieve this scaling while maintaining a high fill-factor.The resulting 110×56-PMUT array,composed of 30×43-μm^(2) rectangular PMUTs,achieved a 51.7% fill-factor,three times greater than that of the previous design.Together with the custom CMOS ASIC,the sensor achieves 2 mV kPa^(−1) sensitivity,15 kPa pressure output,75μm lateral resolution,and 150μm axial resolution in a 4.6 mm×3.2 mm image.To the best of our knowledge,we have demonstrated the first MEMS ultrasonic fingerprint sensor capable of imaging epidermis and sub-surface layer fingerprints.展开更多
文摘This paper presents a 591×438-DPI ultrasonic fingerprint sensor.The sensor is based on a piezoelectric micromachined ultrasonic transducer(PMUT)array that is bonded at wafer-level to complementary metal oxide semiconductor(CMOS)signal processing electronics to produce a pulse-echo ultrasonic imager on a chip.To meet the 500-DPI standard for consumer fingerprint sensors,the PMUT pitch was reduced by approximately a factor of two relative to an earlier design.We conducted a systematic design study of the individual PMUT and array to achieve this scaling while maintaining a high fill-factor.The resulting 110×56-PMUT array,composed of 30×43-μm^(2) rectangular PMUTs,achieved a 51.7% fill-factor,three times greater than that of the previous design.Together with the custom CMOS ASIC,the sensor achieves 2 mV kPa^(−1) sensitivity,15 kPa pressure output,75μm lateral resolution,and 150μm axial resolution in a 4.6 mm×3.2 mm image.To the best of our knowledge,we have demonstrated the first MEMS ultrasonic fingerprint sensor capable of imaging epidermis and sub-surface layer fingerprints.