Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
The type VI secretion system(T6SS)is a double-tubular nanomachine widely found in gram-negative bacteria.Its spear-like Hcp tube is capable of penetrating a neighboring cell for cytosol-to-cytosol protein delivery.How...The type VI secretion system(T6SS)is a double-tubular nanomachine widely found in gram-negative bacteria.Its spear-like Hcp tube is capable of penetrating a neighboring cell for cytosol-to-cytosol protein delivery.However,gram-positive bacteria have been considered impenetrable to such T6SS action.Here we report that the T6SS of a plant pathogen,Acidovorax citrulli(AC),could deliver an Rhsfamily nuclease effector RhsB to kill not only gram-negative but also gram-positive bacteria.Using bioinformatic,biochemical,and genetic assays,we systematically identified T6SS-secreted effectors and determined that RhsB is a crucial antibacterial effector.RhsB contains an N-terminal PAAR domain,a middle Rhs domain,and an unknown C-terminal domain.RhsB is subject to self-cleavage at both its N-and C-terminal domains and its secretion requires the upstream-encoded chaperone EagT2 and VgrG3.The toxic Cterminus of RhsB exhibits DNase activities and such toxicity is neutralized by either of the two downstream immunity proteins,RimB1 and RimB2.Deletion of rhsB significantly impairs the ability of killing Bacillus subtilis while ectopic expression of immunity proteins RimB1 or RimB2 confers protection.We demonstrate that the AC T6SS not only can effectively outcompete Escherichia coli and B.subtilis in planta but also is highly potent in killing other bacterial and fungal species.Collectively,these findings highlight the greatly expanded capabilities of T6SS in modulating microbiome compositions in complex environments.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
基金funding from the National Key R&D Program of China(2020YFA0907200)National Natural Science Foundation of China(31770082,32030001).
文摘The type VI secretion system(T6SS)is a double-tubular nanomachine widely found in gram-negative bacteria.Its spear-like Hcp tube is capable of penetrating a neighboring cell for cytosol-to-cytosol protein delivery.However,gram-positive bacteria have been considered impenetrable to such T6SS action.Here we report that the T6SS of a plant pathogen,Acidovorax citrulli(AC),could deliver an Rhsfamily nuclease effector RhsB to kill not only gram-negative but also gram-positive bacteria.Using bioinformatic,biochemical,and genetic assays,we systematically identified T6SS-secreted effectors and determined that RhsB is a crucial antibacterial effector.RhsB contains an N-terminal PAAR domain,a middle Rhs domain,and an unknown C-terminal domain.RhsB is subject to self-cleavage at both its N-and C-terminal domains and its secretion requires the upstream-encoded chaperone EagT2 and VgrG3.The toxic Cterminus of RhsB exhibits DNase activities and such toxicity is neutralized by either of the two downstream immunity proteins,RimB1 and RimB2.Deletion of rhsB significantly impairs the ability of killing Bacillus subtilis while ectopic expression of immunity proteins RimB1 or RimB2 confers protection.We demonstrate that the AC T6SS not only can effectively outcompete Escherichia coli and B.subtilis in planta but also is highly potent in killing other bacterial and fungal species.Collectively,these findings highlight the greatly expanded capabilities of T6SS in modulating microbiome compositions in complex environments.