In this work,a sialic acid(SA)-imprinted thermo-responsive hydrogel layer was prepared for selective capture and release of cancer cells.The SA-imprinting process was performed at 37℃ using thermo-responsive function...In this work,a sialic acid(SA)-imprinted thermo-responsive hydrogel layer was prepared for selective capture and release of cancer cells.The SA-imprinting process was performed at 37℃ using thermo-responsive functional monomer,thus generating switchable SA-recognition sites with potent SA binding at 37℃and weak binding at a lower temperature(e.g.,25℃).Since SA is often overexpressed at the glycan terminals of cell membrane proteins or lipids,the SA-imprinted hydrogel layer could be used for selective cancer cell recognition.Our results confirmed that the hydrogel layer could efficiently capture cancer cells from not only the culture medium but also the real blood samples.In addition,the captured cells could be non-invasively released by lowing the temperature.Considering the non-invasive processing mode,considerable capture efficiency,good cell selectivity,as well as the more stable and durable SA-imprinted sites compared to natural antibodies or receptors,this thermo-responsive hydrogel layer could be used as a promising and general platform for cell-based cancer diagnosis.展开更多
基金supported by the National Key Research and Development Program of China(2019YFA0112000 and 2016YFC1100203)the National Natural Science Foundation of China(21875092,81925027,21706099 and 81471790)+2 种基金the China Postdoctoral Science Foundation(2016M601745)the Innovation and Entrepreneurship Program of Jiangsu Province,the“Six Talent Peaks”program of Jiangsu Province(2018-XCL-013)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘In this work,a sialic acid(SA)-imprinted thermo-responsive hydrogel layer was prepared for selective capture and release of cancer cells.The SA-imprinting process was performed at 37℃ using thermo-responsive functional monomer,thus generating switchable SA-recognition sites with potent SA binding at 37℃and weak binding at a lower temperature(e.g.,25℃).Since SA is often overexpressed at the glycan terminals of cell membrane proteins or lipids,the SA-imprinted hydrogel layer could be used for selective cancer cell recognition.Our results confirmed that the hydrogel layer could efficiently capture cancer cells from not only the culture medium but also the real blood samples.In addition,the captured cells could be non-invasively released by lowing the temperature.Considering the non-invasive processing mode,considerable capture efficiency,good cell selectivity,as well as the more stable and durable SA-imprinted sites compared to natural antibodies or receptors,this thermo-responsive hydrogel layer could be used as a promising and general platform for cell-based cancer diagnosis.